Statin signature: using proteomics to detect pharmacological fingerprints
Background
Lowering low-density lipoprotein cholesterol with statin therapy is a primary strategy for reducing cardiovascular morbidity and mortality. Yet, adherence to and persistence with statin medication is generally low, complicating the ability to evaluate whether treatment is effective.
Methods
Using modified-aptamer proteomics technology, SomaScan® assay v4.0, we assessed ∼5,000 proteins in 8,395 EDTA plasma samples from individuals aged 29-64 at visit 1 of the Fenland study, totaling ∼42 million protein measurements. A total of 305 individuals (3.6%) reported active statin medication use at this study visit. Predicted statin use was modeled with protein measurements using machine learning methods in 70% of Fenland as a training dataset. A hold-out dataset was used to assess model performance. A predictive model using elastic net logistic regression was optimized based on AUC and robustness to assay noise and sample handling conditions to detect a signature of statin usage.
Results
A total of 839 proteins differed significantly between the ‘active statin’ and ‘no statin’ use groups in univariate analysis (FDR <0.01). Eight of the top 50 significant proteins have known mechanistic associations with statin pharmacology, including HMGCS1, PCSK9, and APOB. A six-protein model was developed with an AUC of 0.91 (sensitivity=0.82, specificity=0.88) and 0.90 (sensitivity=0.80, specificity=0.87) on the training and hold-out datasets, respectively, to predict whether a statin signature is present or not.
Conclusions
We successfully developed a blood-based protein-only model that detects mechanistically-relevant protein changes to predict active statin use in adults. The protein model could compliment self-reported medication status in clinical trials and in healthcare.
Authors
Jessica Kuzma
Sama Shrestha
Clare Paterson
Hannah Biegel
Lori K. Bogren
Michael A. Hinterberg
Yolanda Hagar
Stephen A. Williams
SomaLogic Operating Company, Inc, Boulder CO, USA
Learn more by downloading this poster
More posters
PosterOptimizing biomarker discovery with focus on low coefficient of variation in large-scale proteomics
Coefficients of variation (CV) describe innate technical variation in high throughput molecular measurement platforms and are a standard metric for characterizing and monitoring assay precision. Median CVs range from ~4.5% to 18.0% for immunoassay technology, 1 up to >30% for mass spectrometry,2 ~5% for the SomaScan® Assay, and ~10% for the Olink Explore Assay (Figure 1). Large CVs can cause technical variability to overwhelm biological signal.
PosterA proteomic predictor of conversion from mild cognitive impairment to dementia with potential utility in enhancing productivity of emerging clinical trials
A significant proportion of individuals with mild cognitive impairment (MCI) develop dementia, with annual conversion rates exceeding 10%. Earlier dementia diagnosis and intervention can improve outcomes, and new disease-modifying drugs are being repositioned for the preclinical stages of illness.
PosterQuantitative immunology protein panel built on the SomaScan Assay platform
The SomaScan® assay is a highly multiplexed proteomic assay that uses SOMAmer® reagents to detect proteins in various biological samples. The latest version of the SomaScan assay allows researchers to measure over 11,000 proteins in human blood. The SomaScan assay is designed to provide protein epitope abundance measurements by reporting relative SOMAmer reagent abundance quantified using DNA microarrays.