SomaScan® analysis of non-blood body fluids – Our experience across five different diseases

ABSTRACT

The SomaScan® Platform offers the most comprehensive coverage of the human proteome, with a current coverage of over 7,000 proteins. We have applied the earlier version of the SomaScan Assay that interrogates 1,300 proteins to several diseases. An over-arching theme that is emerging from our studies is the observation that the closer the interrogated body fluid is to the site of pathology, the better it is for mining disease biomarkers. For example, urine is a better fluid to interrogate (rather than serum/plasma) in patients with urinary tract diseases, while stool may be a preferred material to examine in a subject with gastrointestinal disease rather than serum/plasma.

Examples of the following tested samples will be discussed, all of which were executed using a 1,300-plex SomaScan® Platform: lupus nephritis urine samples, bladder cancer urine samples, cerebrospinal fluid samples from patients with neuropsychiatric lupus and multiple sclerosis, colorectal cancer stool samples and inflammatory bowel disease stool samples. In all cases, ~20-40 of the identified hits were selected for ELISA verification in larger cohorts. Overall, ~85% of the SomaScan Assay identified hits withstand verification using commercially available ELISA kits. Downstream studies initiated by the SomaScan Assay will be exemplified using the completed lupus nephritis studies. The latter studies have led to the identification of novel diagnostic biomarkers, prognostic biomarkers, monitoring biomarkers, potential point-of care-tests, as well as therapeutic leads.

In summary, the SomaScan® Platform offers the most comprehensive proteomic coverage with good sensitivity and results that can be successfully verified using orthogonal antibody-based platforms. Taken together with other OMICs explorations, these emerging approaches have the potential to shed novel insights on disease pathways and mechanisms.

In this webinar you will learn:

  • How to assess the proteome of non-blood body fluids
  • The results of detecting disease biomarkers in close proximity to the site of pathology

Dr-CMohan

Chandra Mohan, MBBS/MD, PhD

Adjunct Professor, Rheumatology and Clinical Immunogenetics

Following his medical training in Pathology and Rheumatology at the National University of Singapore and the Singapore General Hospital in Singapore, Dr. Mohan undertook his doctoral thesis work focusing on the cellular immunology of lupus at Tufts University, Boston. His post-doctoral training focused on the genetic analysis of murine lupus. As an independent investigator, his laboratory’s research efforts have concentrated on elucidating the cellular, molecular, and genetic players leading to murine lupus nephritis, with corresponding translational studies in human lupus nephritis. His more recent work has focused on translating findings from basic biology towards the early diagnosis of end-organ involvement in autoimmune diseases. Dr. Mohan’s ongoing studies are aimed at tapping leads from proteomic platforms to mine new biomarkers and targets in chronic rheumatic diseases and selected cancers, and to apply the latest bioengineering technologies to advance the management of these ailments. He currently holds the Cullen Distinguished Professorship at the University of Houston, in Houston, TX. Dr. Mohan is an elected member of the American Society of Clinical Investigation.

Share with colleagues

More webinars

WebinarIdentifying Biomarkers for IBD Diagnosis and Management 

In this webinar, you’ll hear how proteomics technology can enhance the identification of biomarkers for the accurate diagnosis of Crohn’s disease and ulcerative colitis, as well as the identification of biomarkers that predict response to TNF inhibitors and other biologics in patients with IBD.

Learn more

WebinarBoutique Webinar : Predicting Pregnancy Complications with High-Plex Proteomics

The interdisciplinary team, comprising 10-15 scientists and clinician-scientists, is dedicated to advancing diagnostics and therapeutics aimed at enhancing maternal and fetal care. Their primary focus lies in the development of interventions for conditions such as ectopic pregnancy and preeclampsia, alongside the creation of diagnostics to prevent stillbirth.

Learn more

WebinarYoung blood for old brains and the quest to slow brain aging

Aging leads to the degradation of function in nearly all tissues and organs. This process is marked by significant shifts in gene expression and changes in concentrations of all types of biological molecules. Recent technological progress has allowed biologists to measure an unprecedented number of these molecules throughout an organism

Learn more

Explore webinars in our interactive viewer