SomaScan® analysis of non-blood body fluids – Our experience across five different diseases

ABSTRACT

The SomaScan® Platform offers the most comprehensive coverage of the human proteome, with a current coverage of over 7,000 proteins. We have applied the earlier version of the assay that interrogates 1,300 proteins to several diseases. An over-arching theme that is emerging from our studies is the observation that the closer the interrogated body fluid is to the site of pathology, the better it is for mining disease biomarkers. For example, urine is a better fluid to interrogate (rather than serum/plasma) in patients with urinary tract diseases, while stool may be a preferred material to examine in a subject with gastrointestinal disease rather than serum/plasma.

Examples of the following tested samples will be discussed, all of which were executed using a 1,300-plex SomaScan® Platform: lupus nephritis urine samples, bladder cancer urine samples, cerebrospinal fluid samples from patients with neuropsychiatric lupus and multiple sclerosis, colorectal cancer stool samples and inflammatory bowel disease stool samples. In all cases, ~20-40 of the identified hits were selected for ELISA verification in larger cohorts. Overall, ~85% of the SomaScan® identified hits withstand verification using commercially available ELISA kits. Downstream studies initiated by the SomaScan® Assay will be exemplified using the completed lupus nephritis studies. The latter studies have led to the identification of novel diagnostic biomarkers, prognostic biomarkers, monitoring biomarkers, potential point-of care-tests, as well as therapeutic leads.

In summary, the SomaScan® Proteomic Platform offers the most comprehensive proteomic coverage with good sensitivity and results that can be successfully verified using orthogonal antibody-based platforms. Taken together with other OMICs explorations, these emerging approaches have the potential to shed novel insights on disease pathways and mechanisms.

In this webinar you will learn:

  • How to assess the proteome of non-blood body fluids
  • The results of detecting disease biomarkers in close proximity to the site of pathology

Dr-CMohan

Chandra Mohan, MBBS/MD, PhD

Adjunct Professor, Rheumatology and Clinical Immunogenetics

Following his medical training in Pathology and Rheumatology at the National University of Singapore and the Singapore General Hospital in Singapore, Dr. Mohan undertook his doctoral thesis work focusing on the cellular immunology of lupus at Tufts University, Boston. His post-doctoral training focused on the genetic analysis of murine lupus. As an independent investigator, his laboratory’s research efforts have concentrated on elucidating the cellular, molecular, and genetic players leading to murine lupus nephritis, with corresponding translational studies in human lupus nephritis. His more recent work has focused on translating findings from basic biology towards the early diagnosis of end-organ involvement in autoimmune diseases. Dr. Mohan’s ongoing studies are aimed at tapping leads from proteomic platforms to mine new biomarkers and targets in chronic rheumatic diseases and selected cancers, and to apply the latest bioengineering technologies to advance the management of these ailments. He currently holds the Cullen Distinguished Professorship at the University of Houston, in Houston, TX. Dr. Mohan is an elected member of the American Society of Clinical Investigation.

Share with colleagues

More webinars

WebinarAccelerating precision medicine of cancer with SomaScan® proteomics

Proteomics has emerged as the next frontier in precision medicine, and several innovative proteomics platforms have been developed to drive biomarker discovery. We [at Beth Israel Deaconess Medical Center] are using the currently most comprehensive proteomics technology -- the SomaScan Platform, which measures 7,000 proteins -- to discover and independently validate diagnostic, predictive, and prognostic biomarkers for various cancers.

Learn more

WebinarImproving clinical development productivity with high-plex proteomics

While the vast majority of approved pharmaceuticals target proteins, knowledge of the full complement of proteins that are acted on by drugs, or are potentially druggable, remains incomplete. Assessment of the human proteome is thus increasingly recognized as a priority for successful and cost-effective drug development and clinical research.

Learn more

WebinarMillions for Proteomics Research in the Peer Reviewed Medical Research Program

How SomaLogic Technologies can give your research programs an edge

Learn more