Building a genetic atlas of the human plasma proteome

ABSTRACT

The link between a genetic variant and its associated disease endpoint is often indirect. For this reason, genome-wide association studies (GWAS) alone have limited utility in clinical research. By identifying the abundance of particular proteins associated with GWAS variants, we can begin to fill in the gaps. Protein-genotype associations, also called pQTLs, can shed light on causal links between genetic variants and disease and highlight clinically important proteins. However, pQTL analyses have typically been restricted to small scale studies in particular cell lines, due to the technical difficulty of measuring the human proteome at scale. In this webinar, Dr. Benjamin Sun will discuss how he and his colleagues at the University of Cambridge used the SomaScan® Assay to develop a pQTL atlas of human plasma. In a study published in Nature in 2018, they quantified 3,622 plasma proteins in 3,301 healthy participants in order to identify 1,927 pQTLs. 88 of these pQTLs overlapped with disease susceptibility loci. Using Mendelian randomization analysis, Sun and colleagues further identified specific proteins that link GWAS variants to disease, highlighting potential therapeutic targets.

benjamin-hex

Benjamin Sun, PhD, MB, BChir

Royal Free Hospital, London, UK

Dr. Sun is a clinician and a scientist with a strong statistical and computational background. He got his PhD and clinical medicine degrees in a combined MB-PhD program in 2019 from the Department of Public Health and Primary Care at the University of Cambridge, where he was one of six students selected from a cohort of 300. His graduate work focused on big data research on genomic regulators of the human proteome. It was during this time that he authored the Nature publication describing the development of a “genomic atlas” of the human proteome using SomaScan Assay data. Dr. Sun was an author on 13 additional publications during his time at Cambridge. Since completing his MB-PhD, Dr. Sun has been serving as a Foundation Doctor in Trauma and Orthopaedics, Renal Medicine, and Respiratory Medicine at the Royal Free Hospital in London.

Building a genetic atlas of the human plasma proteome

A presentation by Benjamin Sun, PhD, MB, BChir

Share with colleagues

More webinars

WebinarPathways to Digital Health: AI and Omics in Rheumatoid Arthritis

Explore how groundbreaking proteomic research is transforming our understanding of rheumatoid arthritis (RA). In this on-demand webinar, Allan Stensballe, PhD, shares new insights into the molecular landscape of RA-affected synovial tissue, revealing how autoantibodies and protein signatures may hold the key to more precise personalized therapies.

Learn more

WebinarUsing Antibody Profiling to Identify Novel Diagnostic Biomarkers

Current cancer screening methods often lead to false positives, false negatives and invasive biopsies that lack prognostic insights. Emerging research suggests that cancer-specific IgM and IgG antibodies – produced by B cells upon recognizing malignant cells – could serve as stable, easily measurable blood biomarkers for detecting and monitoring high-incidence cancers like melanoma and breast, prostate, bowel, lung and pancreatic cancer. This approach has the potential to improve early diagnosis, reduce uncertainty and enhance treatment planning.

Learn more

WebinarLinking the plasma proteome to echocardiographic parameters in patients with chronic heart failure

Recent advancements in proteomic profiling have unlocked new possibilities for understanding the complex mechanisms that drive heart failure. Measuring thousands of proteins simultaneously makes it possible to capture a comprehensive overview of the patient's health state and investigate underlying disease progression at a subclinical level.

Learn more

Explore webinars in our interactive viewer