Human proteomics: from the operating room to the lab and back
Human proteomics: from the operating room to the lab and back
Optimizing platforms for surgical specimen collection and deep human phenotyping was used to enhance protein biomarker identification using proteomic tools. A series of studies using human eye fluids has helped to diagnose inflammatory retinal disease, select personalized therapies, stage cancer, and point to new therapeutic strategies. These approaches can be broadly applied to human surgical disease.
Learning Objectives
- Learn workflow for human surgical specimen collection
- Learn human disease proteomics experimental design
- Learn future applications of human proteomics to disease diagnosis and treatment
Vinit Mahajan, MD, PhD
Vice Chair for Research, Director, Omics Lab, Molecular Surgery Program
Stanford University
Dr. Mahajan is a vitreoretinal surgeon and professor in the Department of Ophthalmology at Stanford University. He is the Vice Chair for Research and directs the Molecular Surgery Program and the NIH-funded Omics Laboratory that uses high-throughput methods in proteomics, genomics, and phenomics to identify molecules involved in eye disease. His research team discovered the first gene to cause non-syndromic uveitis and is now using protein crystallography to design therapeutic inhibitors for calpain-5. Mahajan and his team performed the first CRISPR gene editing therapy for eye disease in human stem cells. Using translational proteomics, Mahajan’s multidisciplinary team is developing new precision health approaches using molecular biomarkers to diagnose retinal disease, select personalized therapies, and decode the anatomic structures of the human eye.
Human proteomics: from the operating room to the lab and back
A presentation by Vinit Mahajan, MD, PhD
More webinars
WebinarCorrelation of a Nonalcoholic Steatohepatitis Proteomic Test with Clinical Outcomes
In this webinar, Anne Minnich, PhD, biomarker consultant at Bristol Myers Squibb, presents research on the use of the new SomaSignal(TM) NASH bundle test in a recently completed clinical trial.
WebinarHarnessing AI and proteomics for glioblastoma
The development and advancement of aptamer technology opens vast possibilities for unlocking the biocomplexity available within proteomics. Learn more about the powerful tools that are enabling the discovery and validation of clinically relevant biomarkers and accelerating research.
WebinarMapping the human mucosal immune response to respiratory viruses
Conventionally, human immune responses have been extensively characterized using blood. Immune cells, though abundant in blood, are also found in various tissues in varying numbers and with locally relevant functional specification. Assessing immune responses in the airways over the course of infection and convalescence is critical to comprehensively mapping immunity to respiratory viral infections including influenza and SARS-CoV-2.