Human proteomics: From the operating room to the lab and back

Human proteomics: From the operating room to the lab and back

Optimizing platforms for surgical specimen collection and deep human phenotyping was used to enhance protein biomarker identification using proteomic tools. A series of studies using human eye fluids has helped to diagnose inflammatory retinal disease, select personalized therapies, stage cancer, and point to new therapeutic strategies. These approaches can be broadly applied to human surgical disease.

Learning Objectives

  • Learn workflow for human surgical specimen collection
  • Learn human disease proteomics experimental design
  • Learn future applications of human proteomics to disease diagnosis and treatment

Vinit Mahajan, MD, PhD

Vinit Mahajan, MD, PhD

Vice Chair for Research, Director, Omics Lab, Molecular Surgery Program
Stanford University

Dr. Mahajan is a vitreoretinal surgeon and professor in the Department of Ophthalmology at Stanford University. He is the Vice Chair for Research and directs the Molecular Surgery Program and the NIH-funded Omics Laboratory that uses high-throughput methods in proteomics, genomics, and phenomics to identify molecules involved in eye disease. His research team discovered the first gene to cause non-syndromic uveitis and is now using protein crystallography to design therapeutic inhibitors for calpain-5. Mahajan and his team performed the first CRISPR gene editing therapy for eye disease in human stem cells. Using translational proteomics, Mahajan’s multidisciplinary team is developing new precision health approaches using molecular biomarkers to diagnose retinal disease, select personalized therapies, and decode the anatomic structures of the human eye.

Human proteomics: from the operating room to the lab and back

A presentation by Vinit Mahajan, MD, PhD

Share with colleagues

More webinars

WebinarBoutique Webinar Aptamers with protein-like side chains as a versatile tool for high-content proteomics

Proteins, encoded in 20,000 genes in humans, do much of the work in biology. Measuring proteins, which change in response to various perturbations and represent targets for almost all drugs, offers insights about the health status of an organism. Since proteins operate in complex networks rather than in isolation, measuring multiple proteins simultaneously offers richer insights compared to single protein measurements.

Learn more

WebinarUsing Proteomics To Advance Understanding of Alzheimer’s Disease 

Limited understanding due to its complex pathophysiology and lack of definitive biomarkers currently constrains the diagnosis and treatment of Alzheimer’s disease (AD). But new research is uncovering dynamic brain changes during Alzheimer’s progression, offering potential therapeutic targets. This webinar explores how proteomics and systems biology can be integrated to elucidate AD pathology.

Learn more

WebinarPredictive modeling and reliable biomarker discovery in clinical omics studies 

High-content omic technologies coupled machine learning methods have transformed the biomarker discovery process. However, the translation of computational results into scalable clinical biomarkers remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features. Drawing examples from real-world clinical omics studies, I will introduce Stabl, a general machine learning framework that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling.

Learn more

Explore webinars in our interactive viewer