Developing microbiome-directed therapeutics for treating childhood undernutrition

Developing microbiome-directed therapeutics for treating childhood undernutrition

Abstract

This 1-hour talk covers how researchers are testing the hypothesis that perturbations in the normal development of the gut microbiome are causally related to childhood undernutrition, a devastating global health problem whose long-term sequelae include metabolic and immune dysfunction, stunting, and neurodevelopmental abnormalities, which remains largely refractory to current therapeutic interventions.

Learning objectives

This 1-hour talk covers how researchers are testing the hypothesis that perturbations in the normal development of the gut microbiome are causally related to childhood undernutrition, a devastating global health problem whose long-term sequelae include metabolic and immune dysfunction, stunting, and neurodevelopmental abnormalities, which remains largely refractory to current therapeutic interventions.

  • Understand evidence that impaired postnatal development of the gut microbiota is causally related to childhood undernutrition
  • Understand how preclinical gnotobiotic animal models can be used to develop new microbiota-directed therapeutics
  • Understand how multiomic methods, including SomaScan® Assay proteomics, can be used to judge the efficacy and mechanism of action of these therapeutics in clinical studies

JG-picture-1-300x300-1

Jeffrey Gordon, MD

Director, Edison Family Center for Genome Sciences and Systems Biology, Washington University

MB-picture-1-300x300-1

Michael J. Barratt, PhD

Executive Director, Center for Gut Microbiome and Nutrition Research, Washington University

 

Developing microbiome-directed therapeutics for treating childhood undernutrition

A webinar presented by Jeffrey Gordon, MD, and Michael J. Barratt, PhD

Request Information


Share with colleagues

More webinars

WebinarUtilizing proteomic strategies to uncover novel biomarkers and mechanisms in heart failure 

Plasma proteomics is a powerful approach for discovering novel protein biomarkers of drug toxicity in various disease contexts. One such biomarker in cardiovascular disease is apolipoprotein M (ApoM), which plays a crucial role in lipid metabolism and transport and is known to have both anti-inflammatory and cardioprotective effects in the body. Studying ApoM using proteomics requires various approaches to understand its expression, modifications, interactions, and functions in the proteome.

Learn more

WebinarUsing plasma proteomics to understand Alzheimer’s and other brain diseases

Dr. Walker discusses how he integrates proteomic, genetic, brain imaging and cerebral spinal fluid biomarkers from initially cognitively normal individuals who later develop dementia, in order to discover novel blood-based biomarkers and mechanistically relevant proteins for therapeutic target prioritization.

Learn more

WebinarProteomics for precision neuroscience: The power of protein analysis

This webcast highlights how academic, industry and government researchers are directly measuring protein abundance and function via multiplex proteomics to build more detailed characterizations of the biological systems underlying neurodegenerative diseases.

Learn more

Explore webinars in our interactive viewer