Coffee chat: Advanced proteomic analysis

ABSTRACT

Proteomics has often lagged behind genomics in the development of new technologies and approaches. However, in recent years the significant advancement of contemporary techniques for proteomic analysis, such as aptamer-based technologies, has opened the door to a new era of advanced proteomic analysis. In this Coffee Chat, our three experts explore the reasons for the delay in proteomic developments, review the current analytical technologies available for proteomics and reveal the recent advances in the field, before highlighting the pros and cons of specific techniques.

Speak with one of our experts

Contact us

Share with colleagues

More webinars

WebinarBoutique Webinar Aptamers with protein-like side chains as a versatile tool for high-content proteomics

Proteins, encoded in 20,000 genes in humans, do much of the work in biology. Measuring proteins, which change in response to various perturbations and represent targets for almost all drugs, offers insights about the health status of an organism. Since proteins operate in complex networks rather than in isolation, measuring multiple proteins simultaneously offers richer insights compared to single protein measurements.

Learn more

WebinarUsing Proteomics To Advance Understanding of Alzheimer’s Disease 

Limited understanding due to its complex pathophysiology and lack of definitive biomarkers currently constrains the diagnosis and treatment of Alzheimer’s disease (AD). But new research is uncovering dynamic brain changes during Alzheimer’s progression, offering potential therapeutic targets. This webinar explores how proteomics and systems biology can be integrated to elucidate AD pathology.

Learn more

WebinarPredictive modeling and reliable biomarker discovery in clinical omics studies 

High-content omic technologies coupled machine learning methods have transformed the biomarker discovery process. However, the translation of computational results into scalable clinical biomarkers remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features. Drawing examples from real-world clinical omics studies, I will introduce Stabl, a general machine learning framework that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling.

Learn more

Explore webinars in our interactive viewer