Assessment of variability and normalization methods using the plasma 7K SomaScan® Assay v4.1

Assessment of variability and normalization methods using the plasma 7K SomaScan Assay v4.1

The 7K SomaScan Assay v4.1 is capable of measuring 7,288 human proteins. In this webinar, the speakers present the largest technical assessment of this platform to date based on a study of 2,050 samples across 22 plates. Included in the study design were inter-plate technical duplicates from 102 human subjects, which allowed them to characterize different normalization procedures, evaluate assay variability by multiple analytical approaches, present signal-over-background metrics, and discuss potential specificity issues.

By providing detailed performance assessments on this wide range of technical aspects, the presenters aim for this work to serve as a valuable resource for the growing community of SomaScan users.

Topics covered:

  • A comparative analysis of different normalization strategies
  • An analysis of performance across 7,288 SOMAmers® targeting human proteins
  • A discussion of sensitivity and specificity of the assay

Profile image of Julian Candia, PhD

Julián Candia, PhD

Staff Scientist
Longitudinal Studies Section
Translational Gerontology Branch
National Institute on Aging
National Institutes of Health

Image of Dr Keenan Walker

Keenan Walker, PhD

Investigator, National Institute on Aging Intramural Research Program
Chief, Multimodal Imaging of Neurodegenerative Disease (MIND) unit

Assessment of variability and normalization methods using the plasma 7K SomaScan Assay v4.1

A presentation by Julián Candia, PhD, and Keenan Walker, PhD

Share with colleagues

More webinars

WebinarUsing non-hypothesized based approaches for biomarker development

Current biomarkers are only moderately predictive in identifying individuals with mild traumatic brain injury or concussion. Therefore, more accurate diagnostic markers are needed for sport-related concussion (SRC).

Learn more

WebinarThe proteomics of aging: how technology is advancing research

Please join us to hear four experts discuss the present challenges and opportunities for proteomics in aging research: Eric Morgen, COO of BioAge Labs; Paola Sebastiani, faculty biostatistician at Tufts Medical Center and PI on the Longevity Consortium; Birgit Schilling, associate professor, Buck Institute for Research on Aging; and Alessandro Ori, group leader at the Leibniz Institute on Aging.

Learn more

WebinarA multiomic approach to prediction, causation, and prevention of preterm birth and preeclampsia

When coupled with high-content data analysis, these multiomic approaches have allowed researchers to generate high-efficiency data to enable new correlations and insights between the genome, transcriptome, and proteome at a molecular level in health and disease.

Learn more