Assessment of variability and normalization methods using the plasma 7K SomaScan® Assay v4.1
Assessment of variability and normalization methods using the plasma 7K SomaScan Assay v4.1
The 7K SomaScan Assay v4.1 is capable of measuring 7,288 human proteins. In this webinar, the speakers present the largest technical assessment of this platform to date based on a study of 2,050 samples across 22 plates.(1) Included in the study design were inter-plate technical duplicates from 102 human subjects, which allowed them to characterize different normalization procedures, evaluate assay variability by multiple analytical approaches, present signal-over-background metrics, and discuss potential specificity issues.
By providing detailed performance assessments on this wide range of technical aspects, the presenters aim for this work to serve as a valuable resource for the growing community of SomaScan users.
Topics covered:
- A comparative analysis of different normalization strategies
- An analysis of performance across 7,288 SOMAmers® Reagents targeting human proteins
- A discussion of sensitivity and specificity of the assay
Julián Candia, PhD
Staff Scientist
Longitudinal Studies Section
Translational Gerontology Branch
National Institute on Aging
National Institutes of Health
Keenan Walker, PhD
Investigator, National Institute on Aging Intramural Research Program
Chief, Multimodal Imaging of Neurodegenerative Disease (MIND) unit
Assessment of variability and normalization methods using the plasma 7K SomaScan Assay v4.1
A presentation by Julián Candia, PhD, and Keenan Walker, PhD
References
- Candia J, Daya GN, Tanaka T, Ferrucci L, Walker KA. Assessment of variability in the plasma 7k SomaScan proteomics assay. Sci Rep. 2022 Oct 13;12(1):17147. doi: 10.1038/s41598-022-22116-0. PMID: 36229504; PMCID: PMC9561184.
More webinars
WebinarBoutique Webinar: Multiomic Breakthroughs: Immune Monitoring for Precision Disease Detection
Helen McGuire, PhD, talks about how her team introduced a cutting-edge approach to immune monitoring that simplifies sample collection in multi-site clinical trials, particularly benefiting remote and underrepresented populations.
WebinarEvaluation of precision and correlation for the latest proteomic platforms
The field of proteomics is rapidly advancing, enabling precise measurement of thousands of proteins, particularly those in higher abundance. This webcast will explore significant differences in precision within and across the latest large-scale proteomic platforms and their intercorrelations, based on blind duplicate split assays of the leading modified aptamer-based 11K and antibody proximity ligation-based 5K platforms. Each platform exhibits distinct strengths and limitations, requiring careful consideration prior to implementation in individual studies.
WebinarScaling Proteomics: Balancing Performance and Measuring Enough Proteins
As proteomics platforms have advanced, the number of proteins measured and sample throughput have dramatically increased. However, have sacrifices or trade-offs been necessary to make these gains? To find out, Stephen Williams will analyze how the performance of proteomics platforms has changed over time, comparing precision, sensitivity and specificity as throughput increases.