Accelerating research and treatment for Castleman Disease

Using The SomaScan® Assay to identify promising treatment approaches for Castleman Disease

Abstract

Background: Idiopathic multicentric Castleman disease (iMCD) is a hematologic illness involving cytokine-induced lymphoproliferation, systemic inflammation, cytopenias, and life-threatening multi-organ dysfunction. The molecular underpinnings of interleukin-6 (IL-6) blockade–refractory patients remain unknown; no targeted therapies exist. In this study, we searched for therapeutic targets in IL-6 blockade–refractory iMCD patients with the thrombocytopenia, anasarca, fever/elevated C-reactive protein, reticulin myelofibrosis, renal dysfunction, organomegaly (TAFRO) clinical subtype.

Methods: Serum and plasma were isolated for iMCD-1 following standard protocols, stored at –80°C, and shipped overnight on dry ice to Myriad RBM (serum) and SomaLogic, Inc. (plasma) for analysis. Proteomic quantifications were performed in accordance with previously published methods for Myriad RBM Discovery MAP v.3.3, a multiplex immunoassay that quantifies the levels of 315 analytes, and a previous version of SomaLogic SomaScan, a modified DNA-aptamer approach that quantifies 1129 analytes (the current version of SomaScan® quantifies over 7,000 analytes).

Results: Studies of 3 IL-6 blockade–refractory iMCD cases revealed increased CD8+ T cell activation, VEGF-A, and PI3K/Akt/mTOR pathway activity. Administration of sirolimus substantially attenuated CD8+ T cell activation and decreased VEGF-A levels. Sirolimus induced clinical benefit responses in all 3 patients with durable and ongoing remissions of 66, 19, and 19 months.

Conclusion: This precision medicine approach identifies PI3K/Akt/mTOR signaling as the first pharmacologically targetable pathogenic process in IL-6 blockade–refractory iMCD. Prospective evaluation of sirolimus in treatment-refractory iMCD is planned (NCT03933904).

Headshot_D.Fajgenbaum-275x300

David Fajgenbaum, MD, MBA, MSc

Assistant Professor of Translational Medicine and Human Genetics, University of Pennsylvania

In addition to his rare disease research credentials at University of Pennsylvania, Dr. Fajgenbaum is also a patient battling idiopathic multicentric Castleman disease (iMCD). He became ill during his third year of medical school in 2010, had his last rites read, and had 4 life-threatening iMCD relapses. In 2012, Dr. Fajgenbaum cofounded the Castleman Disease Collaborative Network (CDCN). He currently leads 18 translational research studies, including an international natural history study, the first-ever NIH R01 grant studying iMCD, and a clinical trial of sirolimus in iMCD.

Leveraging serum proteomics to identify novel therapeutic approaches and predictive biomarkers

A webinar presented by David Fajgenbaum, MD, MBS, MSc

Learn more by contacting one of our experts

Contact us

Share with colleagues

More webinars

WebinarUsing Proteomics To Advance Understanding of Alzheimer’s Disease 

Limited understanding due to its complex pathophysiology and lack of definitive biomarkers currently constrains the diagnosis and treatment of Alzheimer’s disease (AD). But new research is uncovering dynamic brain changes during Alzheimer’s progression, offering potential therapeutic targets. This webinar explores how proteomics and systems biology can be integrated to elucidate AD pathology.

Learn more

WebinarPredictive modeling and reliable biomarker discovery in clinical omics studies 

High-content omic technologies coupled machine learning methods have transformed the biomarker discovery process. However, the translation of computational results into scalable clinical biomarkers remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features. Drawing examples from real-world clinical omics studies, I will introduce Stabl, a general machine learning framework that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling.

Learn more

WebinarDetecting growing tumors through changes in the plasma proteome 

In this GEN webinar, Nebojsa Janjic, PhD, will discuss the need for a reliable blood-based screening method capable of detecting cancers earlier. During the webinar, he will highlight results from a study involving researchers from SomaLogic and the University of Colorado School of Medicine that used a test capable of measuring 5000 proteins simultaneously.

Learn more

Explore webinars in our interactive viewer