A multiomic approach to prediction, causation, and prevention of preterm birth and preeclampsia
A multiomic approach to prediction, causation, and prevention of preterm birth and preeclampsia
Recent advances in both genomics, transcriptomics, and proteomics have allowed for the development of novel technologies with greater capabilities for biomarker profiling and discovery. When coupled with high-content data analysis, these multiomic approaches have allowed researchers to generate high-efficiency data to enable new correlations and insights between the genome, transcriptome, and proteome at a molecular level in health and disease. For example, an area of unmet need where multiomics is poised to impact significantly is pregnancy-related complications, such as preterm birth and preeclampsia. A better understanding of the molecular mechanisms of feto-maternal changes during pregnancy could help save lives and improve birthing processes.
Our distinguished presenters — members of the Gaudillière lab at Stanford University — describe how they employed a translational approach that combines single-cell mass cytometry with high-plex proteomic and metabolomic analyses to study the role of the human immune system in the pathobiology of fundamental clinical problems, including pregnancy pathologies. The presenters also explain how they used novel machine-learning methods to train multiomic models and identify biologically relevant predictive biomarkers to develop robust diagnostics rooted in a precise understanding of underlying pathobiological mechanisms.
Ina Stelzer, PhD
Instructor
Stanford University
Julien Hédou, MSc
Data Analyst
Stanford University
Dorien Feyaerts, PhD
Postdoctoral Fellow
Stanford University
A multiomic approach to prediction, causation, and prevention of preterm birth and preeclampsia
A presentation by Ina Stelzer, PhD, Julien Hédou, MSc, and Dorien Feyaerts, PhD
More webinars
WebinarMapping the human mucosal immune response to respiratory viruses
Conventionally, human immune responses have been extensively characterized using blood. Immune cells, though abundant in blood, are also found in various tissues in varying numbers and with locally relevant functional specification. Assessing immune responses in the airways over the course of infection and convalescence is critical to comprehensively mapping immunity to respiratory viral infections including influenza and SARS-CoV-2.
WebinarAccelerating precision medicine of cancer with SomaScan® proteomics
Proteomics has emerged as the next frontier in precision medicine, and several innovative proteomics platforms have been developed to drive biomarker discovery. We [at Beth Israel Deaconess Medical Center] are using the currently most comprehensive proteomics technology -- the SomaScan Platform, which measures 7,000 proteins -- to discover and independently validate diagnostic, predictive, and prognostic biomarkers for various cancers.
WebinarImproving clinical development productivity with high-plex proteomics
While the vast majority of approved pharmaceuticals target proteins, knowledge of the full complement of proteins that are acted on by drugs, or are potentially druggable, remains incomplete. Assessment of the human proteome is thus increasingly recognized as a priority for successful and cost-effective drug development and clinical research.