Efficient development of certified diagnostic laboratory developed tests using proteomic data

Background

Proteomic technology is a powerful biological tool with established methods for identifying proteomic biomarkers, but the development of certified diagnostic clinical tests based on proteomic biomarkers can be time-consuming, prone to overfitting issues, and difficult to navigate. We demonstrate the utility of combining pipeline tools, statistical learning techniques, and a knowledge base of in-silico proteomic datasets into a reproducible workflow that allows for efficient development of LDT-certifiable tests using SomaScan® technology.

Methods

Data pipeline and analysis tools were developed using R, in conjunction with proteomic measurements obtained using the SomaScan Platform. The tools take the analyst from data processing and QC through identification of optimized models for prediction of clinical endpoints, and then through validation on a hold-out test set. The tools include an assessment of model robustness against sample handling issues, longitudinal stability, the impacts of assay noise on model performance, effects of putative interferents, and risk of failure during CLIA validation in the lab. Real-life examples of clinical applications demonstrate the effectiveness of the tool in reducing analysis time and increasing model accuracy.

Results

Analysis time for identifying the optimal proteomic model to validation was reduced by at least 80%, with decreased prediction variability by up to 90%. In at least 75% of cases, application of in-silico data allows for tuning of predictive models to ensure robustness in a variety of everyday settings. This tool has led to 16 LDT certified SomaLogic tests in the last 3 years, ranging from anthropometric
measurements to cardiovascular- and cancer-risk predictions.

Conclusions

Not only are powerful, proteomics-driven, diagnostic tests realizable, but they can be LDT certified in an efficient, reproducible manner and made to be robust to real-life variability. Efficient analysis tools allow us to leverage proteomic technology in new ways, leading to tests that can be used for precision medicine applications.

Authors

Y. Hagar
L.E. Alexander
C. Scheidel
A. Zhang
J. Gogain
C. Paterson
R. Ostroff
M.A. Hinterberg

SomaLogic Operating Co., Inc., Boulder, CO, USA

Click below for a downloadable version of this poster

Download poster

Share with colleagues

More posters

PosterOptimizing biomarker discovery with focus on low coefficient of variation in large-scale proteomics

Coefficients of variation (CV) describe innate technical variation in high throughput molecular measurement platforms and are a standard metric for characterizing and monitoring assay precision. Median CVs range from ~4.5% to 18.0% for immunoassay technology, 1 up to >30% for mass spectrometry,2 ~5% for the SomaScan® Assay, and ~10% for the Olink Explore Assay (Figure 1). Large CVs can cause technical variability to overwhelm biological signal.

Learn more

PosterA proteomic predictor of conversion from mild cognitive impairment to dementia with potential utility in enhancing productivity of emerging clinical trials

A significant proportion of individuals with mild cognitive impairment (MCI) develop dementia, with annual conversion rates exceeding 10%. Earlier dementia diagnosis and intervention can improve outcomes, and new disease-modifying drugs are being repositioned for the preclinical stages of illness.

Learn more

PosterQuantitative immunology protein panel built on the SomaScan Assay platform

The SomaScan® assay is a highly multiplexed proteomic assay that uses SOMAmer® reagents to detect proteins in various biological samples. The latest version of the SomaScan assay allows researchers to measure over 11,000 proteins in human blood. The SomaScan assay is designed to provide protein epitope abundance measurements by reporting relative SOMAmer reagent abundance quantified using DNA microarrays.

Learn more

Explore posters in our interactive viewer