COVID-19:
2. Identify disease sub-types
Identify COVID-19 disease complication sub-types in those at risk for severe illness
- Discover protein patterns associated with specific clinical complications
- Develop diagnostic tests based on those patterns
- Ultimately help clinicians with treatment planning and resource allocation
The SomaScan® assay has been used to identify sub-types for multiple diseases
Protein signatures of end-stage Renal Disease in Diabetes
Diabetes is the leading cause of kidney disease worldwide, and diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD). Chronic inflammation is believed to contribute to the progression of DKD to ESRD, although it is unclear how. To better understand the link between inflammation and DKD outcomes, an international team led by researchers at the Joslin Diabetes Center and Harvard University used a custom version of the SomaScan assay to measure the levels of 194 circulating inflammatory proteins in samples collected from a group of 219 patients with type 1 diabetes and impaired kidney function. They found significantly higher levels of 35 proteins in individuals who later developed ESRD, and validated 17 of the identified proteins in a group of 162 patients with type 2 diabetes. Sixteen of the 17 validated proteins were then replicated in a cohort of Pima Indians with normal renal function at the time of sample collection, which suggests that these proteins represent a kidney risk inflammatory signature (KRIS). Unexpectedly, the researchers found that the high levels of KRIS proteins originated outside of the kidney, which implies that DKD progression involves inflammation occurring in other parts of the body. Since the KRIS proteins are elevated in patients with different types of diabetes, different levels of kidney function and different ethnicities, they may prove to be universal markers of DKD that could be used to identify new therapeutic targets, predict risk of ESRD progression and measure response to treatments.
Stratifying Eczema patients based on inflammatory protein signatures
Atopic dermatitis, the most common type of eczema, is a chronic skin condition in which itchy rashes periodically flare up. People with atopic dermatitis are more likely to develop allergies and some studies have suggested that those with allergies may have a different subtype of the disease that could benefit from more targeted treatments. In this article, researchers from MedImmune and the Icahn School of Medicine at Mount Sinai conducted allergy testing on blood samples taken from 76 people with moderate to severe atopic dermatitis compared to 39 healthy controls. In parallel, they measured the levels of 1129 proteins in the blood samples using the SomaScan Assay and found that different proteins were increased in those with atopic dermatitis depending on the type of allergies they had (i.e. food, seasonal, perennial or mixed). These protein inflammatory signatures could be valuable for more precisely characterizing atopic dermatitis patients and determining the best therapies for them.
The Journal of Allergy and Clinical Immunology 2019
Identifying flare-ups in Castleman Disease
Idiopathic multicentric Castleman disease (iMCD) is a rare, life-threatening disorder characterized by enlarged lymph nodes and a wide variety of severe symptoms. iMCD disease progression is believed to be driven by uncontrolled release of proinflammatory proteins, particularly interleukin 6 (IL-6), however most iMCD patients do not respond to IL-6-blocking treatments. To better understand the pathogenesis of iMCD, a team led by researchers at the University of Pennsylvania used the SomaScan assay to measure the levels of 1129 plasma proteins in six iMCD patients. They found that the protein profiles during disease flare and remission were quite distinct, and that chemokines—proteins that attract white blood cells to sites of infection—were more highly enriched during flares than interleukins or other proinflammatory proteins. Two of the patients belonged to a separate clinical subtype and could be distinguished from the others by their distinct protein profiles. Both patients failed to respond to anti-IL-6 therapies, which suggests that different disease mechanisms exist and that measuring plasma protein levels may aid diagnosis and direct treatment of iMCD subgroups.
American Journal of Hematology 2018
Differentiating pulmonary fibrosis from other Chronic Lung Conditions
Idiopathic pulmonary fibrosis (IPF) is a fatal condition characterized by scar tissue that builds up in the lungs, making it harder and harder to breathe. The course of the disease is highly variable, and the cause is usually unknown, which makes it difficult to devise appropriate interventions. Previously, a team led by University of Michigan researchers used the SomaScan assay to develop a six-protein panel that was able to predict IPF disease progression. The goal of this new study was to see if circulating proteins could shed light on the disease biology of IPF. The researchers used the SomaScan assay to compare protein levels in blood from IPF and healthy patients and identified 164 proteins that differed significantly between the two groups. The identified proteins play roles in the defense response, wound healing and protein phosphorylation, which should be helpful for finding new drug targets for treating IPF. Eight proteins were sufficient to distinguish IPF patients from normal controls, which could lead to a minimally invasive way to differentiate IPF from other chronic lung diseases.
Additional use cases
Predict progression
Predict which COVID-19 patients will progress and develop severe illness
Repurpose existing drugs
Repurpose existing drugs by matching them with drivers of COVID-19 progression
Identify new drug candidates
Rapidly identify protein targets for new drug candidates for COVID-19
Facilitate vaccine development
Find COVID-19 protein expression patterns to accelerate COVID-19 vaccine development