Predictive modeling and reliable biomarker discovery in clinical omics studies

Predictive modeling and reliable biomarker discovery in clinical omics studies

High-content omic technologies coupled machine learning methods have transformed the biomarker discovery process. However, the translation of computational results into scalable clinical biomarkers remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features. Drawing examples from real-world clinical omics studies, I will introduce Stabl, a general machine learning framework that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling.

Julien Hédou

Julien Hédou

CEO, SurgeCare

Julien Hédou studied Engineering at Ecole Polytechnique (Paris) before completing his MS in Biomedical Informatics degree from Stanford University. Julien has been working on developing the machine learning pipelines of the Gaudillière lab that integrates high parameter mass cytometry and proteomics using sparse machine learning approaches to identify biologically plausible and reliable predictive biomarkers, focusing on several clinical scenarios: 1) immune mechanisms of surgical recovery and complications, 2) feto-maternal health outcomes, including preterm birth, preeclampsia and endometriosis, 3) immune dysfunction and outcomes prediction in patients with acute ischemic stroke. Julien Hédou is now CEO of SurgeCare, a life science company that commercializes, PreCyte®, for predicting the risk of postoperative complications, and its laboratory services, SurgeLab™, for acquiring individualized immune signatures and analyzing multiomic datasets.

Predictive modeling and reliable biomarker discovery in clinical omics studies

A presentation by Julien Hédou

Share with colleagues

More webinars

WebinarBoutique Webinar Aptamers with protein-like side chains as a versatile tool for high-content proteomics

Proteins, encoded in 20,000 genes in humans, do much of the work in biology. Measuring proteins, which change in response to various perturbations and represent targets for almost all drugs, offers insights about the health status of an organism. Since proteins operate in complex networks rather than in isolation, measuring multiple proteins simultaneously offers richer insights compared to single protein measurements.

Learn more

WebinarUsing Proteomics To Advance Understanding of Alzheimer’s Disease 

Limited understanding due to its complex pathophysiology and lack of definitive biomarkers currently constrains the diagnosis and treatment of Alzheimer’s disease (AD). But new research is uncovering dynamic brain changes during Alzheimer’s progression, offering potential therapeutic targets. This webinar explores how proteomics and systems biology can be integrated to elucidate AD pathology.

Learn more

WebinarDetecting growing tumors through changes in the plasma proteome 

In this GEN webinar, Nebojsa Janjic, PhD, will discuss the need for a reliable blood-based screening method capable of detecting cancers earlier. During the webinar, he will highlight results from a study involving researchers from SomaLogic and the University of Colorado School of Medicine that used a test capable of measuring 5000 proteins simultaneously.

Learn more

Explore webinars in our interactive viewer