Young blood for old brains and the quest to slow brain aging
Young blood for old brains and the quest to slow brain aging
Aging leads to the degradation of function in nearly all tissues and organs. This process is marked by significant shifts in gene expression and changes in concentrations of all types of biological molecules. Recent technological progress has allowed biologists to measure an unprecedented number of these molecules throughout an organism, providing unique insights into the physiological and pathological conditions of cells and organs, including the aging process.
Large-scale proteomic studies in humans demonstrate dramatic shifts in the composition of the blood and cerebrospinal fluid proteomes with age allowing researchers to estimate brain age and identify proteins linked to cognitive decline, neurodegeneration, and dementia. While brain cell- and tissue-intrinsic factors are likely essential in driving the aging process, we find blood-borne factors from young humans and mice are sufficient to counteract aspects of brain aging and improve cognitive function in old mice, while blood plasma from old organisms is detrimental to young mice and impairs their cognition. These findings open opportunities to identify biomarkers and regulators of aging in general and for the brain and other organs specifically.

Tony Wyss-Coray, PhD
D.H. Chen Professor of Neurology and Neurological Sciences
Director, Phil and Penny Knight Initiative for Brain Resilience
Stanford University
Tony Wyss-Coray, PhD, is the D.H. Chen Distinguished Professor of Neurology and Neurological Sciences and the Director of the Phil and Penny Knight Initiative for Brain Resilience at Stanford University. His lab studies brain aging and neurodegeneration, with a focus on age-related cognitive decline and Alzheimer’s disease.
The Wyss-Coray research team discovered that circulatory blood factors can modulate brain structure and function, and factors from young organisms can rejuvenate old brains. Current studies focus on the molecular basis of the systemic communication with the brain by employing a combination of genetic, cell biology, and omics approaches in killifish, mice, and humans.
Wyss-Coray has presented his ideas at Global TED, the Tencent WE Summit, the World Economic Forum, and he was voted Time Magazine’s “The Health Care 50” most influential people transforming health care in 2018. He co-founded Alkahest and several other companies targeting Alzheimer’s and neurodegeneration and has been the recipient of an NIH Director’s Pioneer Award, a Zenith Award from the Alzheimer’s Association, and a NOMIS Foundation Award.
Young blood for old brains and the quest to slow brain aging
A presentation by Tony Wyss-Coray, PhD
More webinars
WebinarRethinking Neurodegeneration Through Blood-Based Biomarkers
Proteomics is reshaping how we predict, diagnose, and understand neurodegenerative diseases. In this roundtable, leading experts Tony Wyss-Coray, PhD, and Jacob Vogel, PhD, explore the power of blood-based biomarkers, from deep molecular studies to global-scale datasets using the SomaScan™ Assay. They discuss how protein signatures can reveal brain aging, predict dementia, and track changes in disease pathways over time, with moderation by Steve Williams, MD, PhD. Learn how cutting-edge proteomics is redefining what is possible in neurological research.
WebinarProteomics in Clinical Trials: Lessons from Semaglutide Treatment in Individuals with Obesity
Advancements in proteomic profiling have opened new avenues for understanding the complex mechanisms underlying obesity and its comorbidities. By measuring thousands of proteins at once, researchers gain a comprehensive view of an individual’s metabolic health, revealing subclinical processes and pinpointing potential therapeutic targets.
WebinarPathways to Digital Health: AI and Omics in Rheumatoid Arthritis
Explore how groundbreaking proteomic research is transforming our understanding of rheumatoid arthritis (RA). In this on-demand webinar, Allan Stensballe, PhD, shares new insights into the molecular landscape of RA-affected synovial tissue, revealing how autoantibodies and protein signatures may hold the key to more precise personalized therapies.
