Young blood for old brains and the quest to slow brain aging

Young blood for old brains and the quest to slow brain aging

Aging leads to the degradation of function in nearly all tissues and organs. This process is marked by significant shifts in gene expression and changes in concentrations of all types of biological molecules. Recent technological progress has allowed biologists to measure an unprecedented number of these molecules throughout an organism, providing unique insights into the physiological and pathological conditions of cells and organs, including the aging process.

Large-scale proteomic studies in humans demonstrate dramatic shifts in the composition of the blood and cerebrospinal fluid proteomes with age allowing researchers to estimate brain age and identify proteins linked to cognitive decline, neurodegeneration, and dementia. While brain cell- and tissue-intrinsic factors are likely essential in driving the aging process, we find blood-borne factors from young humans and mice are sufficient to counteract aspects of brain aging and improve cognitive function in old mice, while blood plasma from old organisms is detrimental to young mice and impairs their cognition. These findings open opportunities to identify biomarkers and regulators of aging in general and for the brain and other organs specifically.

Image of Dr Tony Wyss

Tony Wyss-Coray, PhD

D.H. Chen Professor of Neurology and Neurological Sciences
Director, Phil and Penny Knight Initiative for Brain Resilience
Stanford University

Tony Wyss-Coray, PhD, is the D.H. Chen Distinguished Professor of Neurology and Neurological Sciences and the Director of the Phil and Penny Knight Initiative for Brain Resilience at Stanford University. His lab studies brain aging and neurodegeneration, with a focus on age-related cognitive decline and Alzheimer’s disease.

The Wyss-Coray research team discovered that circulatory blood factors can modulate brain structure and function, and factors from young organisms can rejuvenate old brains. Current studies focus on the molecular basis of the systemic communication with the brain by employing a combination of genetic, cell biology, and omics approaches in killifish, mice, and humans.

Wyss-Coray has presented his ideas at Global TED, the Tencent WE Summit, the World Economic Forum, and he was voted Time Magazine’s “The Health Care 50” most influential people transforming health care in 2018. He co-founded Alkahest and several other companies targeting Alzheimer’s and neurodegeneration and has been the recipient of an NIH Director’s Pioneer Award, a Zenith Award from the Alzheimer’s Association, and a NOMIS Foundation Award.

Young blood for old brains and the quest to slow brain aging

A presentation by Tony Wyss-Coray, PhD

 

Share with colleagues

More webinars

WebinarBoutique Webinar Aptamers with protein-like side chains as a versatile tool for high-content proteomics

Proteins, encoded in 20,000 genes in humans, do much of the work in biology. Measuring proteins, which change in response to various perturbations and represent targets for almost all drugs, offers insights about the health status of an organism. Since proteins operate in complex networks rather than in isolation, measuring multiple proteins simultaneously offers richer insights compared to single protein measurements.

Learn more

WebinarUsing Proteomics To Advance Understanding of Alzheimer’s Disease 

Limited understanding due to its complex pathophysiology and lack of definitive biomarkers currently constrains the diagnosis and treatment of Alzheimer’s disease (AD). But new research is uncovering dynamic brain changes during Alzheimer’s progression, offering potential therapeutic targets. This webinar explores how proteomics and systems biology can be integrated to elucidate AD pathology.

Learn more

WebinarPredictive modeling and reliable biomarker discovery in clinical omics studies 

High-content omic technologies coupled machine learning methods have transformed the biomarker discovery process. However, the translation of computational results into scalable clinical biomarkers remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features. Drawing examples from real-world clinical omics studies, I will introduce Stabl, a general machine learning framework that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling.

Learn more

Explore webinars in our interactive viewer