Utilizing proteomic strategies to uncover novel biomarkers and mechanisms in heart failure
Utilizing proteomic strategies to uncover novel biomarkers and mechanisms in heart failure
Plasma proteomics is a powerful approach for discovering novel protein biomarkers of drug toxicity in various disease contexts. One such biomarker in cardiovascular disease is apolipoprotein M (ApoM), which plays a crucial role in lipid metabolism and transport and is known to have both anti-inflammatory and cardioprotective effects in the body. Studying ApoM using proteomics requires various approaches to understand its expression, modifications, interactions, and functions in the proteome.
Learn about:
- Association between ApoM and heart failure outcomes
- Effects of the chemotherapeutic drug doxorubicin on ApoM levels
- How ApoM heterozygosity affects the regulation of transcription factor EB
Ali Javaheri, MD
Assistant Professor, Medicine, Cardiovascular Division
Washington University School of Medicine in St. Louis
Ali Javaheri, MD, is Assistant Professor of Medicine and Investigator in the Center for Cardiovascular Research at Washington University in St. Louis, and broadly trained in multiple disciplines. His clinical expertise and training is in advanced heart failure, a syndrome with no cure that has a worse prognosis than many cancers (5 year 50% mortality). He has led and contributed to studies that have utilized proteomic strategies to uncover the importance of novel pathways in human heart failure. These studies have highlighted the important role of apolipoprotein M (ApoM). Reduced circulating ApoM is associated with poor prognosis in heart failure. Dr. Javaheri shows the ApoM-content of isolated high-density lipoprotein correlates strongly with its sphingosine-1-phosphate content; however, adjusting for sphingosine-1-phosphate levels only partially attenuated the association between ApoM and heart failure survival. Together with Dr. Mahmoud Nasr at Harvard Medical School, Dr. Javaheri recently filed a provisional patent for nanotherapies related to ApoM. His ongoing studies on ApoM suggest significant translational potential for this pathway in heart failure.
Utilizing proteomic strategies to uncover novel biomarkers and mechanisms in heart failure
A presentation by Ali Javaheri, MD
More webinars
WebinarB Cell Repertoire in Determining Responses to Checkpoint Blockade in NSCLC
In this webinar, Gary Middleton, MD, PhD, and Akshay Patel, PhD, from the University of Birmingham explore the role of the B cell repertoire and autoantibodies in shaping responses to checkpoint blockade immunotherapy in non-small-cell lung cancer (NSCLC). They demonstrate how autoantibody profiling using the i-Ome™ Discovery protein microarray revealed biomarkers predictive of treatment efficacy and immune-related adverse events (irAEs), providing insights into biomarker development and personalized immunotherapy strategies.
WebinarSerum Autoantibodies Differentiate Rheumatoid Arthritis Subgroups
Patients with rheumatoid arthritis (RA) can be categorized as either anti-citrullinated protein antibody-positive (ACPA+) or negative (ACPA-). In this webinar, Dr. Sung will present his research exploring a broad range of serological autoantibodies to uncover immunological differences between these RA subgroups using data from ACPA+ RA patients, ACPA- RA patients, and matched healthy controls.
WebinarData Summit 2025
Take your research further with expert insights from the SomaScan™ Data Summit. Explore the latest platform updates, advanced data analysis tools, and innovative applications for SOMAmer™ reagents. From optimizing sample quality to customizing panels beyond 7K and 11K, this event is packed with knowledge to help you get the most from your data.