A multiomic approach to prediction, causation, and prevention of preterm birth and preeclampsia

A multiomic approach to prediction, causation, and prevention of preterm birth and preeclampsia

Recent advances in both genomics, transcriptomics, and proteomics have allowed for the development of novel technologies with greater capabilities for biomarker profiling and discovery. When coupled with high-content data analysis, these multiomic approaches have allowed researchers to generate high-efficiency data to enable new correlations and insights between the genome, transcriptome, and proteome at a molecular level in health and disease. For example, an area of unmet need where multiomics is poised to impact significantly is pregnancy-related complications, such as preterm birth and preeclampsia. A better understanding of the molecular mechanisms of feto-maternal changes during pregnancy could help save lives and improve birthing processes.

Our distinguished presenters — members of the Gaudillière lab at Stanford University — describe how they employed a translational approach that combines single-cell mass cytometry with high-plex proteomic and metabolomic analyses to study the role of the human immune system in the pathobiology of fundamental clinical problems, including pregnancy pathologies. The presenters also explain how they used novel machine-learning methods to train multiomic models and identify biologically relevant predictive biomarkers to develop robust diagnostics rooted in a precise understanding of underlying pathobiological mechanisms.

Ina Stelzer, PhD Instructor Stanford University

Ina Stelzer, PhD

Instructor
Stanford University

Julien Hedou Data Analyst Stanford University

Julien Hédou, MSc

Data Analyst
Stanford University

Dorien Feyaerts, PhD Postdoctoral Fellow Stanford University

Dorien Feyaerts, PhD

Postdoctoral Fellow
Stanford University

A multiomic approach to prediction, causation, and prevention of preterm birth and preeclampsia

A presentation by Ina Stelzer, PhD, Julien Hédou, MSc, and Dorien Feyaerts, PhD

Share with colleagues

More webinars

WebinarBoutique Webinar Aptamers with protein-like side chains as a versatile tool for high-content proteomics

Proteins, encoded in 20,000 genes in humans, do much of the work in biology. Measuring proteins, which change in response to various perturbations and represent targets for almost all drugs, offers insights about the health status of an organism. Since proteins operate in complex networks rather than in isolation, measuring multiple proteins simultaneously offers richer insights compared to single protein measurements.

Learn more

WebinarUsing Proteomics To Advance Understanding of Alzheimer’s Disease 

Limited understanding due to its complex pathophysiology and lack of definitive biomarkers currently constrains the diagnosis and treatment of Alzheimer’s disease (AD). But new research is uncovering dynamic brain changes during Alzheimer’s progression, offering potential therapeutic targets. This webinar explores how proteomics and systems biology can be integrated to elucidate AD pathology.

Learn more

WebinarPredictive modeling and reliable biomarker discovery in clinical omics studies 

High-content omic technologies coupled machine learning methods have transformed the biomarker discovery process. However, the translation of computational results into scalable clinical biomarkers remains challenging. A rate-limiting step is the rigorous selection of reliable biomarker candidates among a host of biological features. Drawing examples from real-world clinical omics studies, I will introduce Stabl, a general machine learning framework that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling.

Learn more

Explore webinars in our interactive viewer