Aging and the proteome, or How to die young at a very old age
Age is the biggest risk factor for a number of chronic diseases. While genetic changes across lifespan are limited, a recent study by Benoit Lehallier and Nir Barzilai demonstrated that the proteome undergoes measurable waves of change that reflect distinct biological pathways associated with age-linked disease. The study identified age-related patterns in ~3,000 proteins across >4,000 healthy individuals between the ages of 20 and 95 using the SomaScan® Platform.
In this webinar, Lehallier and Barzilai discuss the findings of their Nature Medicine paper “Undulating changes in human plasma proteome profiles across the lifespan” and present new data exploring how probing the proteome can help us to separate chronological age from biological age.
Topics covered include:
- How circulating proteins can be used to predict age and relative health
- How the speed and timing of biological aging has changed over time
- Proteomic signatures of frailty
- Sex-related differences in proteome stability
- The proteome in descendants of centenarians
- Targeting aging based on protein signatures
Benoit Lehallier, PhD
Instructor in Neurology, Stanford University
Dr. Lehallier is a researcher and instructor in the department of Neurology and Neurosciences at Stanford University. Before joining Stanford, Benoit got his PhD in neuroscience from the French National Institute of Agriculture where he studied processing of odors in deep brain regions using MRI. As a postdoc at Roche, he collaborated with researchers at Stanford to identify novel fluid biomarkers of Alzheimer’s Disease. A biostatician by training, Benoit is now using multi-omics approaches to explore aging and aging-related disease in collaboration with Tony Wyss-Coray’s lab at Stanford.
Nir Barzilai, MD
Director, Institute for Aging Research, Albert Einstein College of Medicine
Dr. Barzilai is a chaired Professor of Medicine and Genetics and Director of the biggest center in the world to study the biology of aging and the principal investigator of the Einstein Nathan Shock Center and the Glenn Center. He is the recipient of an NIH Merit Award aiming to extend the healthy life span in rodents by biological interventions. He also studies families of centenarians that have provided genetic/biological insights on the protection against aging. Several drugs are developed based, in part, on these paradigm-changing studies. He is the author of over 270 peer-reviewed papers and a recipient of numerous prestigious awards, including the recipient of the 2010 Irving S. Wright Award of Distinction in Aging Research and is the 2018 recipient of the IPSEN Longevity award. He is leading the TAME (Targeting/Taming Aging with Metformin) multi central study to prove that concept that multi morbidities of aging can be delayed in humans and change the FDA indications to allow for next generation interventions. He is a founder of CohBar Inc. (now public company) and Medical Advisor for Life Biosciences. He is on the board of AFAR and a founding member of the Academy for Lifespan and Health span. He co-founded CohBar He has been featured in major papers, TV program and documentaries (TEDx and TEDMED) and has been consulting or presented the promise for targeting aging at The Singapore Prime Minister Office, several International Banks, The Vatican, Pepsico, Milkin Institute, The Economist and Wired Magazine.
More webinars
WebinarB Cell Repertoire in Determining Responses to Checkpoint Blockade in NSCLC
In this webinar, Gary Middleton, MD, PhD, and Akshay Patel, PhD, from the University of Birmingham explore the role of the B cell repertoire and autoantibodies in shaping responses to checkpoint blockade immunotherapy in non-small-cell lung cancer (NSCLC). They demonstrate how autoantibody profiling using the i-Ome™ Discovery protein microarray revealed biomarkers predictive of treatment efficacy and immune-related adverse events (irAEs), providing insights into biomarker development and personalized immunotherapy strategies.
WebinarSerum Autoantibodies Differentiate Rheumatoid Arthritis Subgroups
Patients with rheumatoid arthritis (RA) can be categorized as either anti-citrullinated protein antibody-positive (ACPA+) or negative (ACPA-). In this webinar, Dr. Sung will present his research exploring a broad range of serological autoantibodies to uncover immunological differences between these RA subgroups using data from ACPA+ RA patients, ACPA- RA patients, and matched healthy controls.
WebinarData Summit 2025
Take your research further with expert insights from the SomaScan™ Data Summit. Explore the latest platform updates, advanced data analysis tools, and innovative applications for SOMAmer™ reagents. From optimizing sample quality to customizing panels beyond 7K and 11K, this event is packed with knowledge to help you get the most from your data.