Using the SomaScan® Assay to identify protein biomarkers and create risk scores for Chronic Obstructive Pulmonary Disease (COPD) and Emphysema

ABSTRACT

COPD and emphysema are lung diseases related to chronic exposure to tobacco smoke or air pollution. The World Health Organization anticipates that COPD will be the number three cause of death worldwide by 2030; however, the majority of smokers and people exposed to air pollution do not develop COPD or emphysema. To better understand why only some people develop disease, we used SomaScan v4.0 (4,776 human proteins) to identify plasma biomarkers of disease status as well as severity and progression in 6,017 subjects from the COPDGene cohort. Because we were able to identify hundreds of individual biomarkers, the majority of which explained only a small percentage of the phenotypes, we used penalized regression (LASSO) to develop protein risk scores, which typically include 200-300 of the most influential proteins. These protein risk scores explained as much as 40-50% variance of disease.

In this webinar you will

  • Learn the basic clinical features and pathophysiology of COPD and emphysema
  • Understand how the SomaScan Assay can be used to discover biomarkers
  • Consider caveats on how to design good proteomic discovery studies and what potential biases should be considered
  • Learn how to use penalized regression (LASSO) to develop protein risk scores

Russ-hex

Russ Bowler, M.D., Ph.D.

Russell Bowler, M.D., Ph.D. obtained a B.S. in mathematical and computational sciences from Stanford University, a M.D. from the University of California at San Francisco (UCSF), and a Ph.D. in Cell and Developmental Biology from the University of Colorado (CU). He completed his internal medicine residency at UCSF and a pulmonary and critical care fellowship from CU.

The mission of Dr. Bowler’s lab is to understand the mechanisms of how cigarette smoke leads to the development of chronic obstructive pulmonary disease (COPD), the third leading cause of death in the United States. His team has generated genetic, genomic, and metabolic profiles on 10,000 subjects in the NIH sponsored COPDGene cohort and used these Omics data to identify novel diagnostic and therapeutic targets.

In 2020, Dr. Bowler and collaborators formed the SomaScan® Proteomics Consortium to promote collaboration among prospective cohort studies that follow participants for a range of outcomes and perform SomaScan profiling of individuals. The consortium facilitates an open exchange of ideas, knowledge, and results in order to accelerate the study of proteomics profiles associated with chronic disease phenotypes.

Share with colleagues

More webinars

WebinarAccelerating precision medicine of cancer with SomaScan® proteomics

Proteomics has emerged as the next frontier in precision medicine, and several innovative proteomics platforms have been developed to drive biomarker discovery. We [at Beth Israel Deaconess Medical Center] are using the currently most comprehensive proteomics technology -- the SomaScan Platform, which measures 7,000 proteins -- to discover and independently validate diagnostic, predictive, and prognostic biomarkers for various cancers.

Learn more

WebinarImproving clinical development productivity with high-plex proteomics

While the vast majority of approved pharmaceuticals target proteins, knowledge of the full complement of proteins that are acted on by drugs, or are potentially druggable, remains incomplete. Assessment of the human proteome is thus increasingly recognized as a priority for successful and cost-effective drug development and clinical research.

Learn more

WebinarMillions for Proteomics Research in the Peer Reviewed Medical Research Program

How SomaLogic Technologies can give your research programs an edge

Learn more