Is massive scale proteomics causing a paradigm shift in biomarker discovery?

ABSTRACT

In this 45-minute talk, Dr. Stefánsson will discuss the largest population proteomics study ever performed to help provide more insight on disease and health outcomes. This collaborative research assembled expertise from deCODE Genetics and SomaLogic to combine the study of genetic and protein diversity to characterize disease biomarkers in the human population. The data from this type of proteomic study will inform drug discovery and development as well as improvements in health management. You will learn about:

  • The high-throughput technologies that made this study possible
  • The application of population proteomics in diagnosis and management of common and rare diseases

Kari-Stefansson-Headshot-Hex

Dr. Kári Stefánsson

CEO, deCode Genetics

Kári Stefánsson is an Icelandic neurologist and founder and CEO of Reykjavik-based biopharmaceutical company deCODE genetics. In Iceland he has pioneered the use of population-scale genetics to understand variation in the sequence of the human genome.

Share with colleagues

More webinars

WebinarIdentifying Biomarkers for IBD Diagnosis and Management 

In this webinar, you’ll hear how proteomics technology can enhance the identification of biomarkers for the accurate diagnosis of Crohn’s disease and ulcerative colitis, as well as the identification of biomarkers that predict response to TNF inhibitors and other biologics in patients with IBD.

Learn more

WebinarBoutique Webinar : Predicting Pregnancy Complications with High-Plex Proteomics

The interdisciplinary team, comprising 10-15 scientists and clinician-scientists, is dedicated to advancing diagnostics and therapeutics aimed at enhancing maternal and fetal care. Their primary focus lies in the development of interventions for conditions such as ectopic pregnancy and preeclampsia, alongside the creation of diagnostics to prevent stillbirth.

Learn more

WebinarYoung blood for old brains and the quest to slow brain aging

Aging leads to the degradation of function in nearly all tissues and organs. This process is marked by significant shifts in gene expression and changes in concentrations of all types of biological molecules. Recent technological progress has allowed biologists to measure an unprecedented number of these molecules throughout an organism

Learn more

Explore webinars in our interactive viewer