
 

Rebecca: Hello, everyone. And thank you for attending today's webinar, Harnessing AI 
and Proteomics for Glioblastoma, presented by SomaLogic. I'm Rebecca, and I'll be 
moderating this webinar. I'd like to start off by introducing today's speakers, Andra V. 
Krauze, physician, early investigator, radiation oncologist at NCI and NIH; DeAunne 
Denmark, Senior Director of Translational Medicine and Clinical Development at 
SomaLogic. You can read their full bios on the left side of your window by selecting the 
speakers tab. Just a few notes before we begin. You can access closed captions from 
the bottom right corner of the video player. This webinar is being recorded, and it will be 
available to watch on demand within 24 hours. We'd love to hear from you during the 
presentation. Please submit any questions you have using the questions and answers 
tab on the left side of your screen. Time permitting, we will conclude with a Q&A 
session. 

Let's begin. Andra, please go ahead. 

Dr. Andra V. Krauze: Hello, and thank you for having me for this webinar. Today I'll be 
speaking about harnessing artificial intelligence and augmenting computational learning 
to improve glioma outcomes. This is the proteome edition. I will be focusing heavily not 
just on harnessing artificial intelligence and computational learning, but how do we go 
from having proteomic data to actually linking that to clinical glioma outcomes, and how 
we can take advantage of computational learning to do this. 

With that, I'll begin. I have no disclosures, but I will acknowledge that I have a bias, and 
that is that I believe in single-minded dedication to harnessing growing data in the 
oncology and medical space to improve patient outcomes. 

With that, the work we do. I am a radiation oncologist, and I work in radiation oncology 
branch at National Cancer Institute, NIH, and I'm also a physician early investigator. So 
I carry out both clinical work and seeing patients and treating patients on clinical trials, 
as well as carrying out academic research. We treat patients with radiation therapy. I'm 
a radiation oncologist. That is my job. And we run clinical trials. The goal of my research 
is to develop artificial intelligence methods for the curation of data, to both create an 
infrastructure for robust data collection in oncology, as well as harmonization of the data 
that renders it analyzable. 

The ultimate goal is, of course, to identify biomarkers that can ultimately be linked to 
radiation therapy in a manner that will allow for clinically meaningful artificial 
intelligence-based algorithms to connect radiation oncology dosimetry data to omic 
datasets. Today I'll be discussing disease site brain and histology glioblastoma. 

The motivation for our work, for my research, is grounded in the fact that outcomes in 
glioma remain poor. In glioblastoma, this is essentially a terminal diagnosis. This is 
multifactorial, but it is in great part due to the fact that glioblastoma functions via 
biological pathways that are both redundant, as well as highly heterogeneous. We have, 
as a result, a limited understanding of the biology and triggers that drive resistance in 
this disease. We do believe that large-scale proteomic data, omic data in general, and I 
started by saying data in the oncology space can help us examine biological response. 



 

Given the large amount of data in this space, we do require artificial intelligence that is 
clinical driven and clinical curated to help identify patterns that help us then examine, 
understand, and ultimately target biology. 

I broke up this talk into several sections in order to organize how we think about this 
problem. I'll start by speaking regarding glioma and radiation oncology, and then move 
on to the proteome, and eventually to future directions on how we can take advantage 
of large-scale proteomic data in this space. 

I'll start by giving us some context in the clinic. This is a hypothetical fictional case of a 
33-year-old gentleman, previously well. He's a practicing dentist who's presenting with a 
first-time seizure. He is seen by our neurosurgery colleagues. He's getting taken to the 
operating room, where he undergoes an incomplete resection. Given the large burden 
of disease you can see in this patient's MRI, this is not surprising. As well as the 
involvement of eloquent areas, pathology comes back as a glioblastoma, and this 
patient now presents to a neuro-oncology clinic. Now, the plan is for six weeks of 
concurrent or at the same time radiation given with chemotherapy. The chemotherapy 
being oral agent temozolomide. This is then followed by 6 to 12 months of adjuvant 
chemotherapy. 

Given all the standard of care management, the actual median survival is 14 months. In 
more recent studies, we have been able to see higher parameters for this up to about 
20 months. But generally, this is a terminal diagnosis with significant [unintelligible 
00:04:59] and impact on the patient, both from a neurological standpoint and obviously 
from a survival standpoint. 

A hypothetical conversation here is important to ground what we are going to discuss 
today. This is the filter through which I would like you to look at this talk. These 
questions are questions that I get most often in the clinic, and I structured them as such.  

The patient usually will ask, "How will I be treated?" I already mentioned that the 
standard of care management in glioblastoma is concurrent chemo and radiation. 
Radiation together with chemotherapy given at the same time. This is standard of care, 
and it has been shown to improve survival. In fact, the concomitant or concurrent 
administration of radiation with chemotherapy is the only proportion of our treatment that 
has been shown to improve survival in this disease by getting radiation together with 
chemo. 

“How will you target the radiation or the chemotherapy based on my tumor biology?” At 
this point, we have to acknowledge that we don't currently actually alter either 
intervention based on the tumor biology in glioblastoma.  

Very often then, patients go on to ask, "Okay, but what about targeted agents for 
cancer, and which agent are you using?" We don't currently have approved targeted 
agents for this cancer. "How do you know that this treatment is working?" Well, we will 
do an MRI of the brain one to three months after completion of treatment. 

 



 

"Will this MRI show that I am better or that my tumor is responding?" This is a 
complicated question and answer, because the MRI shows both the impact of treatment 
or treatment effect, as well as potential tumor response. It's difficult to be able to 
separate these two features until much later as we're looking sort of test of time of how 
the MRI evolves or potentially where we say the needle of truth, meaning we had to do-- 
We went into neurosurgery and obtained tissue that shows existing active tumor. 

"Is there a blood test to see if my tumor is growing?" We do not currently have a test 
that can provide this answer in glioblastoma. "Is my treatment personalized?" It is in fact 
actually not personalized in the sense that although the radiation oncology proportion of 
the treatment is based on targets that we generate given the patient's imaging, so that 
component is in fact personalized, obviously, to the patient's anatomy and their tumor. It 
is not personalized to tumor biology, or to the individual response to radiation therapy or 
chemotherapy, for that matter. 

Although the treatment is standard of care, this is a treatment for all patients. This 
combination of radiation and chemotherapy that I described with an adjuvant or helper 
chemotherapy given 6 to 12 months following completion of this is based on existing 
evidence. 

This brings us to this conundrum. On the left-hand side, we see this high heterogeneity 
and variability, and on the right-hand side, we see what appear to look like eggs. It's 
actually a dessert. It's a passion fruit panna cotta. But really, the point here is that even 
though we are aware of this high biological redundancy and heterogeneity, we actually 
treat all of our glioblastoma patients with concurrent chemoradiation followed by 
adjuvant chemotherapy. 

Therefore, this brings me to the issues at hand. What you heard the patient, this fictional 
interaction, what you heard the patient ask is where we should be getting our cues from. 
These are very important questions.  

What we learned there is that there is no biomarker for tumor response or resistance. 
There is no personalized treatment for this gentleman. And, ultimately, the management 
of recurrence is heterogeneous, and effectiveness is limited. Although he didn't really 
ask me about that at this point yet, but that usually happens during the course of 
treatment or upon follow-up. 

Which brings me to a brief overview of gliomas. These are malignant tumors that are 
derived from glial cells or their precursors. This is the most common primary adult brain 
tumor. The median aged diagnosis is 64 years of age, and is more common in males as 
compared to females. Survival, as I mentioned, is quite poor, 6.8% at five years. 
Typically, this tumor is actually classified based on how it looks under the microscope, 
as well as its molecular features. 

When we talk about staging versus grading, of course, there's no staging glioblastoma, 
that tumor does not spread anywhere. It takes a patient's life by infiltrating the brain. 
Very rarely is it documented to go outside of the brain. There are case reports of this, of 



 

course. However, the patient loses their life as a result of infiltration of the brain by the 
tumor, and this eventually causes this to be a terminal disease. 

There is molecular classification in glioblastoma, which I am alluding to there. This is 
comprised of MGMT methylation status, which I will discuss a little bit more in future 
slides, where methylation of this promoter renders this better prognosis. And IDH 
mutation, which also, if mutated, is correlated with better prognosis. 

Now, in the big picture of management to review, we know that what we first need to do 
is remove the tumor through maximal safe resection, and this gives us some tissue. 
Then we pursue radiation therapy and chemotherapy, temozolomide, which is taken by 
mouth, and these are two interventions that are given at the same time or concurrently. 

Following this, the patient is followed with MRI of the brain. We usually have an MRI 
prior to surgical intervention, then an MRI after surgical intervention, and sometimes 
another prior to initiation of chemoradiation. And then we have an MRI one month to 
three months after they complete chemoradiation, and then every two to three months 
thereafter. 

During the treatment, we do acquire cone-beam CTs on the linear accelerator while we 
administer radiation therapy, and these can capture some imaging changes. 
Remember, these are cone-beam CTs, not MRIs. The use of these images is as yet 
investigational. 

I went over the big-picture management of glioblastoma here, because I felt it was 
important to showcase where we get data in this space. We know we get some tumor 
tissue, as I described, and then we get some laboratory values while the patient is 
undergoing chemoradiation, of course every single time after that when they receive 
chemotherapy. And we may or may not have, in some patients, tumor tissue upon 
recurrence. Many patients do not, in fact, have a second resection. Only some do. The 
bulk of our data, I will say, is in the imaging space, given that we have these MRIs that 
we have prior to intervention, and then as a result of follow-up. 

This brings us to our hypothesis. The hypothesis that we can use clinical imaging endo 
symmetry data from radiation therapy that, when aggregated and interpreted in 
conjunction with omic datasets, specifically in this case the proteome, we can arrive at 
serum biomarkers that can result in biologic interpretation and give us a peek, if you will, 
or a look under the hood, to be able to figure out what is going on here, why is this 
tumor responding or not responding, what causes tumor failure or treatment failure. 

Eventually, this can lead to adaptable prognostic, and eventually predictive and 
scalable, AI algorithms that can help us improve outcomes. We want to go from clinical 
data on the left-hand side to an improvement in outcomes. On the right-hand side, you 
see some Kaplan-Meier survival curves that display subsets of patients, depending on 
how they do with treatment. We would like to, of course, elevate those patients that 
currently don't do so well to doing better. The question is, how can we take data to be 
able to elevate these curves? 



 

Now, I come to part two, proteomic analysis and oncology. This webinar prompted me 
to look a little bit deeper as to how the proteome is actually being employed in evidence-
based medicine. You can see that we have over 70,000 publications for Web of Science 
search earlier this month that involve the proteome. Of these, 3%, or just over 2,000, 
are existing in the space of oncology. Of these, 312 publications involve the proteome 
as approached by a serum as the tissue of analysis. As you can see from the numbers 
there, we have increasing number of publications that involve serum and the proteome. 
This is yet a smaller proportion of the data overall. 

While the proteome in oncology is steadily rising, and that's an important piece to note 
there, we know that the proteome in oncology, in terms of where the data is actually 
present, is mostly present in these small studies. Some of them are based on animal 
models or tissue culture. We have relatively little data that originates from as a 
biospecimen from patients on trials that are undergoing both trial treatment, as well as 
standard of care management. A lot of the data really lives in mass spectrometry. 

When we look at datasets that have associated data in the public domain, if we look at 
proteomic biomarkers in oncology, you can see that datasets that have associated data 
that is available for analysis or validation or transferable algorithms, which I'll come to in 
a second, there are only roughly between 17 and 25 datasets that would fulfill this brief. 
A lot of these are not likely to be quite as comparable to the data I will show you today. 
I'm planting this with you today, because it is extremely important for us to be able to 
share our datasets. Of course, in a safe, respectful manner to our patients while they're 
identifying data to be able to put this in the public domain for people to be able to 
advance patient outcomes by using data, including but not limited to, the proteome. 

This brings me to challenges and templates for success. Conversations often arrive at 
the point of, "Well, do we have any proteomic biomarkers that have actually arrived at 
the clinic that have actually become so successful that we are able to actually harness 
them in the clinic?" The reality is that there's very few, and you can see them there. 
These biomarkers are typically used for monitoring of the disease. They're not used for 
diagnosis. To a large extent, they're not really used to change what you actually do in 
terms of management. 

The data actually lives, as I explained in my previous slide, in cell lines, animal, and 
tumor tissue-based analysis. This doesn't necessarily capture the tumor heterogeneity 
that I described earlier. Very often, it is based on relatively few proteins that are 
compiled as a panel versus the "proteome." Very often, they involve a single time point 
of biospecimen collection. These are serious challenges, because when we talk about 
validation and transferability, this is going to be a problem. 

Further to this, the datasets are relatively small. Looking at, for example, sex differences 
analysis in glioblastoma, we can see that all prospective studies we can look at in the 
last 10 years or so really deal with a few hundred patients. Retrospective studies are 
much larger, but these are far less likely to have the depth of information that we would 
require for validation and transferability of findings. This is compounded by defining the 



 

signal with a proteome. I know that others have discussed this in webinars. This is an 
important point that cannot be discussed enough. 

When we capture the proteome, what are we capturing? On the right-hand side, so we 
have the organism and we have the tumor. What parts are actually being measured? Of 
course, we know that when we're measuring the proteome, there's this interplay 
between the genome, the transcriptome, and of course the proteome, which is 
comprised of both altered and unaltered proteins. The altered proteins undergo several 
modifications, all of which are extremely important and as yet important for classification 
and defining the role of what ultimately happens in terms of outcomes and linkage of 
data. 

With that, this brings me to this really huge conundrum as to when we are measuring 
the proteome, and we find important signals, how are we to link these bench to bedside, 
to animal work, to tissue culture, to be able to not only probe deeper in terms of the 
signaling pathways and the biology that is at play, and to be able to translate this into 
druggable targets? 

This brings me to the part three of my talk: data types, integration, and analysis. 
Essentially, my work involves this very busy slide where on the left-hand side, you see 
the imaging that I hinted at earlier that we are capturing in patients and has been 
captured over years. Although siloed, it's important to be linked with radiation oncology 
dosimetry, as well as omic datasets. Of course, today we're discussing the proteome, 
which is a dataset that is as yet quite novel, but very important to be able to interrogate 
the biology, which we'll come to shortly. 

We do know that molecular biomarkers, as you can see in the lower left-hand corner 
panel, are growing. It is important to be able to link this to biomarkers, not just in 
oncology at large, which I pointed out to you is actually still a relatively smaller 
proportion, because it is a very difficult area to study for the reasons I mentioned, but to 
be able to take this into the neuro-oncology realm. You can see that in radiation 
oncology, people have been analyzing biomarkers for quite some time. When we're 
looking at neuro-oncology specifically, this is a challenge. 

In part, this is a challenge, because when we're talking tissue, of course, tissue, 
obtaining tissue in a brain tumor patient requires a neurosurgical intervention. It isn't 
simply a matter of obtaining a biopsy or getting a small proportion of the tumor, but 
really being able to take the patient back to the operating room, given the fact that the 
patient may have neurological problems and may have performance status difficulties 
and may really not be well enough or willing to go to the operating room to have more 
tissue, which brings me back to the leitmotif of this talk of serum and obtaining the 
proteome. 

This is a good summary slide to discuss clinical deficits in oncology, where we really 
have this heterogeneous and imperfect capture of outcomes. By outcomes, I mean 
overall survival, progression-free survival, and, of course, the impact on normal tissue. 
With that, the ability, or often the lack of ability, to fully integrate radiation oncology 



 

dosimetry data, given that all of these data types exist in silos that typically don't talk to 
each other and more about this in my next slide. 

When we do analysis that involves computational analysis, including but not limited to 
the proteome, very often when I have people start to work with me, they expect to arrive 
boots on the ground and have this beautiful dataset that is completely and fully labeled, 
and that's simply not the reality. The reality is that we spend 80% to 90% of our time 
going from unstructured data to semi-structured data to structured data in the 
repositories that you can see here, and from the electronic health record system to be 
able to link clinical data and the outcomes of patients to data that we measure on a 
large scale as may be the case in the context of the proteome, but not exclusively so. 

As you can see there, the oncology-side-specific databases and registries typically are 
populated by large-scale data that is not fully labeled, especially not to the extent to 
which we would need it to be in order to be able to classify something as large in 
dimensionality as the proteome is. 

This is a slide where I'm discussing the data landscape hopefully in an illustrated format. 
On the right-hand side, you can see, so what we say, the external or large-scale data 
iceberg, which is short and fat. This is comprised of large-scale data that exists in 
registries and public databases. We're all familiar with these. This is extremely large 
data, but it is not very deep in terms of the number of features or labels that it carries. 

On the left-hand side, we see something like the National Cancer Institute iceberg, 
which is tall and skinny. It has a lot of depth, including but not limited to the proteome as 
you can see there. These are sometimes relatively smaller datasets from studies, and 
these can be prospective or retrospective. Given the ability to treat patients on study, 
we're able to obtain biospecimens that can then allow for analysis of more deeper 
datasets, including the proteome, metabolome, lipidome, et cetera. 

Growing data in this no man's line between the two icebergs is rapidly evolving. Our 
ability to be able to render these both structured, as well as analyzable, is highly 
important to be able to link it to the proteome, which at this point in time I would 
consider a more of a niche or a rare data type as it is growing. As it does so, the ability 
to place this in the public realm for people to work with and apply computational 
analysis to will be highly important. 

My work specifically is the work of many people. I work with several stakeholders. You 
can see on the left-hand side there, including the American Association of Assistant 
Medicine with our effort of Operational Ontology Radiation Oncology or Oncology Now, 
O3, which I think will be published in Radiation Oncology Journal shortly. We also work 
with artificial intelligence resource here at NCI NIH, as well as Biomedical Translational 
Research Information System, or BTRIS, where we correlate electronic health record 
data together with other data channels, as well as computational genomics 
bioinformatics branch and computational systems biology branch. 



 

All of our data at this point is integrated into NIH Integrated Data Analysis Platform, 
NIDAP, or Palantir for short. Today I'll be focusing more so on the proteome, given the 
time limitation. 

In brief, here is the patient population that I will be discussing today and their proteomic 
analysis. These are 82 patients that have pathology-proven glioblastoma diagnosis, and 
their diagnosis date is between 2005 and 2013. This is an important parameter to keep 
in mind. These patients were treated with standard-of-care management, concurrent 
chemoradiation, and serum was obtained in these patients on trial prior to initiation of 
chemoradiation and after completion of chemoradiation. 

The samples were analyzed subsequently using aptamer-based SomaScan proteomic 
assay. We have 7,289 human proteins. This analysis is based on 150 microliters of 
serum. The clinical data, which I spend quite a bit of time talking about, involves all of 
those aspects, including age, gender, how the patient was treated, radiation therapy 
parameters, as well as molecular parameters and outcomes, progression-free survival, 
overall survival, which were aggregated in NIDAP Palantir from my previous slide. 

This is a good point to bring home the aspect of we spend 80% to 90% on the left-hand 
side of the slide, clinical data. Again, to my point of when we want to do computational 
analysis on oncologic data and aggregate that in a meaningful way with omic datasets, 
we need to keep in mind that the clinical data is both imperfect as well as highly 
heterogeneous, and it exists in multiple silos. It is often not aggregated. 

The ability to collect and curate the data is paramount. Knowing that data and verifying 
its accuracy is absolutely the most important aspect of being able to create any sort of 
data linkage to be able to establish connections, as I described there in step three, and 
before we can aggregate data streams. Very often, the question that emerges is where 
is the PFS column, or where is the progression-free survival column? Very often it is 
expected that this column somehow magically exists in our datasets. It does not. 
Progression and the assignment of progression or coding progression is a huge 
problem in our field, which I'll come to in a second. 

Now, proteomic data is very clean when we receive it. I think that there's always, or very 
often we are spoiled with normalization and a foregone approach to how this was 
obtained, including but not limited to perhaps the existence of where we have a pre-
analytical testing that has occurred perhaps involving machine learning. I know 
SomaLogic has this, and we have carried this out on our data. Essentially then we go 
on to signal change and how this is being translated or linked to clinical data before we 
can get to machine learning. 

Establishing that connection, I wanted to give an example. This is a relatively, I think, 
simple question to wrap our mind around, but a complicated question to actually 
answer. The question is, okay, but how much tumor does your patient have? The 
patient has glioblastoma, we know that, but how much glioblastoma does this person 
have? This is a question of tumor burden. Very often people say, "Well, just look at the 
resection status. Of course, that's logical because how much tumor was removed?" 



 

That's not to say very much about how too much tumor is necessarily left behind and 
the person, given that I described this as a highly infiltrative tumor, and therefore that 
linkage cannot be immediately established. 

Perhaps people will say, "Well, you design a target for radiation therapy, and those 
radiation therapy volumes could be used as a surrogate of how much tumor does the 
patient have." Of course, it is also highly imperfect. We do a little experiment here to 
illustrate this clinical data conundrum where we have these two parameters that have 
been shown to be associated with survival outcomes at prognostics or resection status 
where gross hormone resection involves removal of "all of the tumor." Subtotal 
resection is an incomplete resection of the tumor, as in the case that I described upfront 
in my talk. 

Then we have some radiation therapy volumes. In this case, gross tumor volume, which 
is supposed to represent how much tumor the patient has, plus the resection cavity. 
This is our primary volume that we then grow to administer radiation therapy. Here I 
have actually contoured a residual tumor volume which is, in this case, exemplified by 
the tumor as enhancing one-to-one Gad or gadolinium MRI of the brain. What we can 
see here is that there is not great correlation between the type of resection status and 
the volume that emerges as a result of radiation therapy, dosimetry as rendered by 
variant eclipse. This is our treatment planning system. 

The point that I'm trying to make here is that when we're asking the question “How 
much tumor does the patient have,” these surrogates are unlikely to be as helpful as we 
might think. Perhaps in the future, of course, we will look, and this is part of our ongoing 
analysis with artificial intelligence resource, is to look at using textural features and 
artificial intelligence through segmentation to pull out how much tumor may or 
abnormalities present in a patient's MRI that we can then link to the data. 

As you can see here on the right-hand side, we know that even resection status isn't 
always prognostic in this case. For example, in this dataset, it is not. Then when we look 
at tumor volume as rendered from a clinical annotation of the scan used for radiation 
therapy planning in the lower right-hand corner panel, we can see that patients with a 
larger tumor volume, i.e. greater than four DCCs in fact do worse. That has been 
described in studies. It is important to know your data and keep these linkages that may 
be able to leverage in mind. 

How do we establish connections to known molecular prognostic classification? I talked 
about MGMT earlier. This is O-6-methylguanine-DNA methyltransferase. This is a gene 
that encodes a DNA repair protein. By removing alkyl products from the O-6 position of 
guanine, what we are having here is that when the promoter is methylated. This renders 
it inactive, and therefore this results secondarily improved patient outcome. 

Now, we know that MGMT status is prognostic and protective in glioblastoma. This is 
obtained from glioblastoma tissue. This brings me back that point I made earlier about 
how easy or difficult is it to obtain data parameters that can be linked to omic analysis. 



 

If this is, for example, in our dataset, we know that methylated patients do better and 
unmethylated patients do worse, and unknown, of which there's roughly 37% of our 
cohort, we have an unknown MGMT status, for example, talk about missing this of data. 
Of course, I mentioned that these patients were treated 2003 and 2015, and this is not 
unusual to see in the literature. These aspects do need to be analyzed within datasets 
before we can move on to analysis of the protein or linkages. 

We established connection to clinical parameters, as you can see here, both for several 
clinical parameters, as well as the outcome parameters of overall survival and 
progression-free survival. It is important to keep in mind that whatever biospecimen you 
acquire, in our case, it was serum for which we carried out the protein, which is what I'm 
discussing today, you want for those biospecimen acquisitions to be as close as 
possible to the intervention that you carried out or interventions, plural, in this case, 
because as the natural history of the tumor progresses, we know that additional 
treatments happen, perhaps different agents, different chemotherapies, repeat 
resection, reradiation, et cetera. All of these are likely to alter what you're going to see 
when you do an analysis of the, for example, proteome.  

This brings me the proteomic signal. We assess for alteration between time points, in 
this case, prior to administration of chemoradiation and after chemoradiation. It is 
important to be able to look at this logically in terms of significantly altered targets, 
significant patient numbers and significant target interactions before we can look at 
hallmarks of cancer and hypothesis testing. In this analysis, in this cohort that I 
described earlier, this is just to give you a snapshot, this is from a recent publication of 
ours in Cancers, a snapshot of the top 10 upregulated and downregulated proteins. I 
knew that there was signal in the data before I moved on to more complex analysis, 
which I will show you shortly. 

Given that, when we did then more or several bioinformatics analysis for signal 
alterations, we again noted that there was a signal alteration between pre-
chemoradiation versus post-chemoradiation in the proteome. We also observed some 
really large changes pre- versus post-chemoradiation for some subjects. This prompted 
a lot of discussions both within bioinformatics within our teams here, as well as with 
SomaLogic. We did carry out several additional analyses looking at outliers. Ultimately, 
we kept all of the data. We did not exclude our outliers, and I can discuss this in more 
depth later, if questions arise. 

Very important, the serum samples I explained were obtained over a large period of 
time, and they were kept in the freezer for an average of 3,442 days. There's quite a 
range there as you can see from 2.2 to 15.9 years. I did not find an alteration in signal, 
given the storage of these samples. I'm just giving three examples of three targets 
there, so that you can have a look at comparison of how long the sample was in the 
freezer and subsequently the protein signal change in blue versus the days collection to 
analysis in yellow. This was good. 

This is not an assumption, by the way. It may be that given the type of analysis you 
carry out or the type of protein that you look at, you may or may not find a difference. 



 

We did not, however, find a difference based on how long the sample was in the 
freezer. Now, interesting, in terms of looking at signal alteration, which I alluded to 
earlier, pre- versus post-chemoradiation, I took a look, initially, at several factors, and 
this is just one example. I looked at long-term survivors. These are patients that 
survived more than 20 months. I will just quickly flip my slide and go back and forth to 
give you a context for this versus short-term survivors. 

When I go back and forth, you can appreciate in this panel that there is a significant just 
a glance alterations that you are able to see in some of these proteins. Here we 
selected some that were either extremely upregulated or downregulated and proteins 
that they interacted with, so that you can get a sense of that alteration signal. The 
alterations are in aspects that are both interesting, as well as a hypothesis-generating, 
in the sense that there's tumor suppressors and there are angiogenesis mediators, 
hypoxia mediators. Some aspects that have yet to be defined in more depth. With that, I 
go on to even another analysis where we looked at rapid progressors. 

These are folks that progressed in less than six months following the diagnosis versus 
long-term survivors that survived more than 30 months. Again, you can appreciate that 
there is an alteration in signal in some of these important domains. With that, we arrive 
as if we are to take these signals, and I cannot show you all of them, because this data 
is embargoed at this moment, given that a couple of our papers are sitting with 
reviewers or conferences. We arrive at this problem here. 

When we take our signals, we arrive at the hairball problem. The hairball problem is 
basically this conglomeration of signals that we really don't know how to take this into 
bench to bedside and what signal to go after, given that we don't quite know what is 
meaningful here, what is relevant, and what is irrelevant. How do we look at removing 
relevant or insignificant findings? Which brings me also eventually to computational 
analysis. Really, the point here is for ongoing work. Just to give another context, this is 
the administration of HDACi inhibitor, valproic acid on study, which was the case in 29 
of these 82 patients. 

You can see how there is this extreme explosion, this firework of signal that we're 
seeing. When you superimpose the full change, you can see all these targets. Some are 
going up, some are going down. What do we do? Well, we would like to be harnessing 
artificial intelligence. I have spent most of this talk discussing processing aggregation of 
data endpoints, as well as how to plan for transferability and validation in the future by 
linking clinical data to proteomic data. With that, I think this is the final crowning glory 
here, is harnessing artificial intelligence in the proteome. 

The only way that is possible is if all these steps have occurred prior to that. When your 
computational analysis folks show up in the lab or in the clinic and want this perfect data 
set, it is important to note that it is actually a lot of emotional labor to arrive at that point 
before you can harness AI. That's the process that I described, and now here you are. 
Now you have the proteome, and that is amazing. And you want to combine that with 
other features, including imaging and radiation therapy. That is evolving work for us, but 



 

we did look at feature engineering to combine clinical data and the proteome as 
acquired, based on my previous slides. 

We want to look at the dataset, create classes, and determine what matters most. For 
that, we use artificial intelligence-based approaches for prediction. This paper has just 
been published in the journal Cancers, I would encourage you to take a look at that to 
look at our-- this is the work of Dr. Toshi, who's a post-doc in my lab. You can look at all 
of the development and the experimentation that went on to be able to arrive at this 
rank-based, hybrid feature and waiting selection method, which I will not discuss in 
great detail here, because it is described over the course of 27 pages in this manuscript. 

Given that we were able to identify several relevant proteins, of which six of them had 
emerged in all of our other analyses pretty well throughout. That's important to see, that 
we were able to identify similar signals, and this was carried out by several groups in 
parallel analysis. We also identified the cystatin E/M or CST6, which is a cysteine 
protease inhibitor. I'm only pointing this one out, because this was not one of our highly 
emerging signals initially in any of our other analyses. But when we carried out this 
analysis using this machine learning approach, this one emerged as one of the seven. 

These are the seven relevant proteins that define the administration of chemoradiation. 
When we look at signal proteome acquired prior to chemoradiation and after, these are 
the seven that emerge, that define that interventions given that there are two that are 
given concurrently. We can see from this that these proteins are actually highly relevant 
in glioblastoma. And I don't want to say just in oncology, but in glioblastoma, that is 
highly important. To carry out some mental tests in terms of what evidence exists out 
there, because this will not only allow for potential validation down the line, but also to 
make sure that linkages can be obtained in terms of signaling pathways. 

Which brings me to my next slide. When we now take these seven features that 
emerged via this method and we place them here, in this case, in ingenuity pathway 
analysis, we now arrive at these disease and functions. We see, for example, 
glucocorticoid receptor signaling. This is interesting, because of course patients do 
receive dexamethasone or other corticosteroids during the administration of 
chemoradiation, prior and during, given that they have very often significant swelling 
and inflammation both due to the tumor itself, as well as the administration of treatment. 

That particular aspect hasn't really been classified and is a very difficult problem to 
classify in and of itself. We also found PI3K/AKT and 14-3-3 mediated signaling that 
emerged as part of disease and functions. These were part top canonical pathways that 
these seven features correlated with, as you can see here. This is important, because 
we know that P13K/AKT in glioblastoma is associated with development and 
progression by growth and survival metabolism and resistance to cell death and 
angiogenesis. 

This is important, because we have seen these signals in several analyses. What is 
really fascinating is that we can see some of these signals be both up and down, but in 
different patient populations, which gets me to my point upfront about the biological 



 

heterogeneity and how the proteome may be able to give us a peek under the hood as 
to what actually happens when some patients respond, and some have disease that 
seemingly is extremely resistant and has ongoing progression. 

We go from this, our hairball problem, to identifying upstream mediators, in this case, 
EGF and CTNNB1, as well as going from this explosion of signal that we saw in the 
proteome pre- versus post-chemoradiation in glioblastoma to a more cleaner pathway. 
This may be what happens proteomically when you give an individual with glioblastoma 
chemoradiation pre-  post-analysis of the proteome. The signals that you can see there 
have the [unintelligible 00:40:18] change-- the proteins rather, have [unintelligible 
00:40:20] change superimposed with the data from our panel. 

You can appreciate that some targets have predicted activation, and some have 
predicted inhibition. All of this is subject to ongoing research under investigation as we 
explore the balance between proliferation and survival and tumor migration in the 
microenvironment. We come to part four and the final component of my talk regarding 
current intersectional research questions. 

I started with this slide earlier on to give you some context as to if you were to find data 
in this space, where would it exist? We know there's tumor tissue. We know there's 
some laboratory values that are standard of care. And we know that there may be later 
tissue once the patient has progressed, but this is harder to come by, really, and not as 
common, given the fact that we are discussing tissue from the brain. 

We know that MRI is one aspect, so imaging that we have the most of. Given that I just 
explained that there is signal alteration in the proteome in this context, what would 
happen if we had serum proteome, for example, at all of these time points in larger data 
sets? Imagine the ability to be able to analyze biological signaling pathways in that 
context. Imagine if that data was publicly available for researchers to explore and be 
able to train and test artificial intelligence algorithms. This needs to be done with clinical 
data interplay and clinician supervision to be able to arrive at interpretable findings. 

I early on planted the thought about how we don't fully know what progression is in this 
space, how treatment effect and tumor progression are difficult to separate when 
looking at imaging. This is the subject of ongoing work with artificial intelligence 
resource here at NCI NIH for our data set, which will then be placed together with omic 
analysis to further examine the biological interplays of signals that I described earlier. 
Defining progression is a very challenging problem. And although there's been 
significant evolution here, we have yet to arrive at an artificial intelligence-based 
response assessment criteria in neuro-oncology. 

This is really important, because as you can see in this very busy table, when I have 
looked even more recently at response criteria, this is a complicated problem where we 
have tried to quantify what response or progression is. But you can see it's highly 
imprecise, and this remains the case even today. It is possible that by harnessing omic 
analysis, including but not limited to the proteome, we may be able to define this in a 
manner that is robust and then can define the progression time point as or outcome 



 

endpoint to be able to take a more robust or a ground truth sense of what progression is 
into artificial intelligence analysis that harnesses the proteome to be able to peel apart 
that onion of heterogeneity and redundancy. 

It is very important to be able to place radiation therapy dosimetry data in clinical 
frameworks so that it can be used. It is currently in the treatment planning system 
Varian eclipse. While it is available, it is very difficult to aggregate data to be able to 
take all of these data streams together to be able to take advantage of computational 
analysis. 

We have done so here in the NIH data integration platform [unintelligible 00:43:54] 
Future directions involving these data sets, I think, involves the aggregation of data that 
exists in all of these channels, and being able to bring it today together in a robust 
defined manner, both rendering data that is currently unstructured data analyzable. 

This is absolutely crucial to be able to harness computational AI-based method. Simply 
having the method is insufficient to be able to advance the brief if we have data where 
it's, as you've heard the term, garbage in, garbage out. It is that effort that is occupying 
a great proportion of the time where probably computational-based methods also need 
to be employed. 

The proteome, of course, is a very exciting but deep component of the data that needs 
exposure and aggregation. This is part of the Cancer Moonshot goals, in terms of 
creating new data systems that break down silos and ensuring that knowledge is 
disseminated, made available to as many people studying the subject as possible, so 
we can make a difference for patient outcomes. 

In summary, I discussed clinical data exposure. I discussed some proteomic data in our 
glioblastoma patients that was obtained using serum pre- and post-chemoradiation, and 
the usage or example of computational analysis to be able to pull out the most 
significant features. It is my hope that in the future we can carry complete data sets into 
the public repositories as the data continues to be published and is increasingly peer 
reviewed. 

With that, I would like to say thank you to all of my collaborators and my staff, especially 
my core team and radiation oncology, and Dr. Tasci [unintelligible 00:45:44] Sarisha, 
my student at this time, as well as all my other students, radiation oncology branch, and 
all of my collaborators in computational [unintelligible 00:45:53] bioinformatics branch 
and computational statistics, as well as artificial intelligence resource. With that, I'll stop 
there, and we'll take any questions. 

Rebecca: All right. Wonderful. We can move on now to the Q&A. As a reminder, you 
can still submit questions using the Q&A tab on the left of your screen. I see we have a 
lot of great questions already. We'll try and get to as many of them as possible. Let's 
begin. What led you to begin exploring proteomics in GBM, and what specific 
strength/utility does it provide as both a single omics approach and in combination with 
other multi omics? 



 

Dr. Andra: I think this is a great question, because this subject comes up a lot at a lot of 
conferences and a lot of papers and abstracts as I showed a bit in my presentation 
there. The reason that this was on our radar for a long time, we collect biospecimen on 
protocols as you saw there and have been doing so for quite some time. The goal of 
that biospecimen collection has always been the analysis, in this case, both blood and 
urine. You guys saw serum proteomic data today, but we are looking at additional 
analysis, including involving [unintelligible 00:47:12] et cetera. 

These ideas, given the fact that we have so little understanding of the heterogeneity and 
redundancy that occurs in a signaling standpoint in glioblastoma, we wanted to be able 
to probe that. We knew that this was only going to be possible through biospecimen 
acquisition. The proteome on this scale, the 7K scale, only became available more 
recently. We knew that eventually this was going to be something that we wanted to do, 
hence our biospecimen acquisition and the intent to carry out this type of analysis. 

To answer the question, I think that we need to look ahead where we think we will be in 
perhaps 10, 15, 20 years and plan accordingly in our prospective studies. Because it is 
highly important, as I cannot stress enough, that we gather those biospecimens that are 
realistically analyzable. Tissue is a problem, of course, when we're talking brain. We 
want to be able to have biospecimens that have the potential to be interrogated omically 
down the line with multiple time points. For us, the proteome was on our radar, hence 
our biospecimen acquisition. 

Just to touch on the single omics approach in combination, I haven't specifically talked 
about the concept of analyzing the pet protein. I refer to the pet proteins where we 
analyze 1 protein or 5 or 10 or 20, but not 7,289. My issue with that approach I think is 
that as I try to show the redundancy, you may be missing all of these interplay, this 
balance of signals that you're not really going to see if you analyze five proteins or five-
protein panel. 

I showed you there 14-3-3 sigma as a potential mediator, but if I only looked at 14-3-3 
sigma, for one thing, I would not know what 14-3-3 sigma is talking to. But I happen to 
know that it has another 6 friends in the panel, for example, as well as another 100 that 
are talking to it that modulate its activity. I would not know that if I was looking at an 
approach that had a more limited breadth of proteomic analysis, if that makes sense. 

Rebecca: All right. Great. Thank you so much. That's a really extensive answer. Our 
next question, in your experience, what are the strengths of the platform for use in both 
translational mouse models and downstream clinical research? 

Dr. Andra: We have considered both of those aspects along the way while we carried 
out this analysis. We think that the strength of the platform, which I alluded to already, is 
that it's very large. I think to me that's really important. That's important also in 
connecting it to mass spec data sets or other proteomic data sets that are out there, 
including but not limited to, I only talked about serum today, but there's of course tissue 
proteomics, et cetera. The more signal you have to work with, that you can link to other 



 

signal, the more you're likely to find a meaningful linkage that can help you eventually 
identify druggable targets to improve outcomes. 

I think that bench to bedside component that you alluded to is achievable given that. 
That same connection needs to be built to animal work. Even though the measurements 
are not comparable head to head. These are discussions that we've actually had with 
SomaLogic several times. We know that there are protein panels that are available in 
animals, and of course, a lot of the data will be originating there. I alluded to that in my 
talk given what we see in web of science in terms of existing data. 

We know that that linkage can be built between human proteomics, specifically GBM 
proteomics and animal GBM proteomics. That linkage, once built, which is also going to 
be computational, is going to allow us to go back and forth between the findings to be 
able to dig deeper and to be able to manipulate the pathways with drugs, et cetera, to 
be able to figure out how outcomes can be improved. 

Rebecca: All right. Great. Our next question, what's next for your research and 
proteomics and or multiomics applications in these areas of high unmet clinical need? 

Dr. Andra: We will continue proteomic analysis. Actually, we are going to do more 
samples. We're going to analyze even more samples. This iterative process. You asked 
me how did we start doing the proteome, and I said that we had a bit of a vision for our 
program and what we wanted to do. We continue to acquire specimens on study, and 
we are going to carry out more proteomic analysis on additional specimens. We will also 
carry out metabolomic analysis. We are looking at other options as well, including 
linking this with the tissue that we have for these patients. This is often challenging in 
the neuro-oncology field, because we don't have a ton of tissue, and everybody wants 
the tissue. 

It is a problem in terms of being able to not use up too much of it, but also to be able to 
link what we see at the genomic and transcriptomic level with what we see at the 
proteomic level. That's our four-pronged approach. Metabolomic, further proteomic, 
linkage to tissue, and linkage to imaging. I didn't have the time to discuss all of that 
today, but we are using computational analysis and linkage between all of these 
aspects. 

Rebecca: All right. Thank you. Yes, sorry, I'm just scrolling a little here. Next question, 
what are a few of the most exciting or surprising findings and insights from applying an 
unbiased proteomic approach here and in combination with other high-resolution 
methods versus pursuing hypothesis-driven biomarkers? 

Dr. Andra: I think the most surprising-- I think the first thing was that we have signal, 
actually, and this sounds-- This is an interesting question, is that I think there should be 
no [unintelligible 00:53:53] assumption that when you take a sample pre- versus post- 
an intervention, that you necessarily have a change in your signal. I don't think that 
should be an assumption, but there is signal, and there's a lot of signal. In fact, there's 
fireworks of signal.  



 

I think that was the one aspect that at first we're like, "I wonder, these are proteins. This 
is the proteome." 7,289 signals. Some of the changes are relatively small. We know that 
the proteome is 20,000 some proteins, of which we believe about 600 or something like 
that are functional. Really, there's no assumption that you're going to see signal, but we 
do see signal.  

Coming to the next surprising approach-- We can argue about how surprising this is or 
isn't, but the administration of HDACi inhibitor, valproic acid, as an agent together with 
chemoradiation on study, looking at that aspect was interesting. We saw a signal there, 
too, between the folks that had received the agent together with chemoradiation and 
those that had not, that had received chemoradiation alone.  

Then the question is, well, when we see signal situations like that, how does that gel or 
not gel with folks that, say, receive this particular agent for seizures but don't have a 
brain tumor? That is an interesting aspect, as this gets me a little bit up to the point of 
how are we measuring or linking this to the tumor state or the tumor burden? Those 
were surprising aspects. 

Surprising also, but in a sense reassuring, was to see that we were seeing this balance 
of signal between aspects that were elevated or proteomic panels or groups or 
pathways that were elevated but also decreased. It was this constant balance that we 
were seeing in our data that we still see and to be able to then look at how this gels with 
clinical data in terms of outcomes, because this indicates that we are looking at a 
biological interplay of multiple signals. 

Some go up, some go down, and when we put this in, say, ingenuity pathway analysis 
or [unintelligible 00:55:55] GSEA, we really do see that some things go up and some 
things go down, but it's really the composite of that entire package that you're 
measuring. That was also interesting. Maybe it would've been a bit interesting to see 
that only some things only go up and some things only go down, but it's actually an 
interplay. It's a balance. That is really important aspect to keep in mind. The use of 
artificial intelligence when we arrived at these seven features that you saw there, and 
this is an analysis where we really only looked at pre versus post, what seven things 
emerge, in this case, seven things. 

It was interesting to see that those seven proteins did link to biology, did link to 
glioblastoma in a way that could be conceived of as biologically meaningful and jelling 
with evidence-based medicine as currently captured. As data evolves, I'm sure that all 
these findings of course continue to evolve, but that was really interesting. To find one 
of the signals wasn't a really prominent one, but did emerge in the machine learning 
analysis. I think that's an important aspect actually, because it allows us to remove 
irrelevant or insignificant features to elicit a high correlation. Because people might say, 
"Well, why didn't you just take the top 10 or top 20 or top 100, 200, 500? How would you 
know which ones to use?" 



 

You wouldn't know. In the non-ML analysis, we found anywhere from 200 to nearly 400 
proteins that "mattered." When we did the AI machine learning analysis, we found 
seven that defined this particular aspect. That's pretty cool. 

Rebecca: Well, great. This I think will have to be our final question. We are coming to 
the end of our time here. We have had a lot of great questions, and we couldn't get to all 
of them. But we'll try and get back to everyone personally after the webinar. For our last 
question, thank you for the excellent talk. You mentioned the presence of outliers. 
Interested if you might expand on this and the degree of individual variation or subtypes 
observed in these patients. Have you detected what clinical features this may be 
associated with? 

Dr. Andra: Great question. This was a subject of discussion for weeks. We really did 
not find a specific correlation with any clinical features. I talked a little bit about how our 
first thought was, "Okay, some of these samples are quite old. They have been in a 
freezer a long time. What does this do or not do to the signal? We don't actually know." 
We didn't find a correlation there. SomaLogic actually helped us with this and carried 
out an ML-based analysis, which I didn't get a chance to really even discuss in great 
depth here. This is something that is available to people. I'm sure there's also 
individualized other analyses that could be carried out that are perhaps SomaLogic 
independent. 

In any case, that didn't turn up anything. When we looked at all of the parameters in 
terms of validity of our data, there was no good way to say that this is either linked to 
any clinical aspect or any storage aspect. Ultimately after discussion between all of the 
groups that I mentioned that are my collaborators, as well as SomaLogic and our team, 
the decision was made to keep all of the data, because we were concerned that by not 
doing so, we would be introducing bias. 

Bias is one of our big things that I also didn't get to discuss today, but we really were 
very conscious of the fact that we wanted to be as true as possible to the signal as 
captured. It is possible that there are individuals out there that are just natural outliers. 
There may be features that we do not know or cannot define at this point given available 
clinical data, because remember, the clinical data I use 29 features, but you cannot 
measure the person ran to the laboratory that morning where they had a particularly 
greasy meal or whatever the situation might be. You don't know that. There's no way to 
actually quantify that aspect. For now, we kept all of the data. We didn't exclude 
anything. 

Rebecca: Well, thank you both so much. I believe we are out of time now. Thank all of 
you for attending today's Fierce Biotech Webinar, for submitting these great questions. 
I'd like to thank our speakers for participating, and SomaLogic for presenting today's 
webinar. A recorded version of this will be available for you to access within 24 hours 
using the same audience link that was sent to you earlier. Thank you again for joining, 
and we look forward to seeing you at future events. 


