What the …?? …. Standing back, I wonder what the artist envisioned while painting this piece. Did they just enjoy seeing the colors mix and build elaborate textures? Are they trying to communicate a new revelation about the human condition?

It turns out the artist is barely two years old. Far too young to really be grappling with existential questions. The artist most likely just enjoyed playing with the paint.

We have a normal tendency to over- or misinterpret things, whether it be art itself or the artist’s intentions. We can do the same with genomic data. With over 75,000 genetic tests available (Johnson, 2018), the deluge of information can wash over us and the medical experts, leaving us grappling with deeper questions of meaning and use.

Recently, a study came out about how primary care doctors, cardiologists or oncologists view genomic “art” (Pet et al., 2018). Many of the doctors surveyed showed concern over how to address the findings from consumer genomic tests that told healthy people they were at risk for serious diseases. They worried that the results could lead to unnecessary medical treatment, increased costs, potential complications and problems with insurance. Overall, they wanted the patients to be provided with clearly communicated, actionable results: “What does it mean and what should I do?”

How actionable or reliable can genomic test results be? If we scan the brush-strokes of the whole genome, many of us (including medical people) would be left scratching our heads and saying, “What the…?” As we previously noted, genomes are noisy to the point of being called “space vomit.” Yet, there is still a belief that genetic testing will be pivotal to healthcare in the future (Pet et al., 2018).

We are taking steps in the right direction for learning how to improve the interpretation of genomic art in a meaningful way, but do we even need to? Novartis scientists recently conducted a study to link genetic variants (think “mutations”) to disease by using proteomics (Emilsson et al., 2018). In their analysis of nearly 5,000 proteins found in serum, they learned that many proteins clustered into groups that were co-regulated. The study also revealed that the protein groupings could be used to glean health insights.

What happened when genomic data were layered onto the picture? Well, the study reiterated the difficulty in linking a genetic variant to a single protein, which highlights the complexity of our bodies. However, the study suggested that some variants could be connected to the identified protein groups.

Maybe just focusing on and maximizing the more immediate potential of proteins to reveal the inner working of our bodies is the most direct and interpretable route for realizing the artistic promise of precision medicine.

 

References

Johnson, C. (2018, May 7). Medicine’s Wild West: 10 new genetic tests enter the market each day. The Washington Post. Retrieved on August 1, 2018 from https://www.washingtonpost.com/news/wonk/wp/2018/05/07/medicines-wild-west-10-new-genetic-tests-enter-the-market-each-day/?utm_term=.6cf729004c2e.

Emilsson, V., Ilkov, M., Lamb, J. R., Finkel, N., Gudmundsson, E. F., Pitts, R., . . . Gudnason, V. (2018). Co-regulatory networks of human serum proteins link genetics to disease. Science. doi:10.1126/science.aaq1327

Pet, D. B., Holm, I. A., Williams, J. L., Myers, M. F., Novak, L. L., Brothers, K. B., . . . Clayton, E. W. (2018). Physicians’ perspectives on receiving unsolicited genomic results. Genet Med. doi:10.1038/s41436-018-0047-z